Step
*
of Lemma
imax-class-val
∀[Info,T:Type]. ∀[f:T ─→ ℤ]. ∀[es:EO+(Info)]. ∀[lb:ℤ]. ∀[X:EClass(T)]. ∀[e:E(X)].
((maximum f[v] ≥ lb with v from X)(e) = imax-list([lb / map(λv.f[v];X(≤(X)(e)))]) ∈ ℤ)
BY
{ (Auto
THEN Unfold `imax-class` 0
THEN RWO "es-interface-accum-val" 0
THEN Auto
THEN RWW "is-interface-accum" 0⋅
THEN Auto
THEN RepUR ``imax-list eclass-vals`` 0
THEN (RWO "map-map" 0 THENA Auto)
THEN RepUR ``compose combine-list`` 0) }
1
1. Info : Type
2. T : Type
3. f : T ─→ ℤ
4. es : EO+(Info)
5. lb : ℤ
6. X : EClass(T)
7. e : E(X)
⊢ accumulate (with value b and list item e):
imax(b;f[X(e)])
over list:
≤(X)(e)
with starting value:
lb)
= accumulate (with value x and list item y):
imax(x;y)
over list:
map(λx.f[X(x)];≤(X)(e))
with starting value:
lb)
∈ ℤ
Latex:
Latex:
\mforall{}[Info,T:Type]. \mforall{}[f:T {}\mrightarrow{} \mBbbZ{}]. \mforall{}[es:EO+(Info)]. \mforall{}[lb:\mBbbZ{}]. \mforall{}[X:EClass(T)]. \mforall{}[e:E(X)].
((maximum f[v] \mgeq{} lb with v from X)(e) = imax-list([lb / map(\mlambda{}v.f[v];X(\mleq{}(X)(e)))]))
By
Latex:
(Auto
THEN Unfold `imax-class` 0
THEN RWO "es-interface-accum-val" 0
THEN Auto
THEN RWW "is-interface-accum" 0\mcdot{}
THEN Auto
THEN RepUR ``imax-list eclass-vals`` 0
THEN (RWO "map-map" 0 THENA Auto)
THEN RepUR ``compose combine-list`` 0)
Home
Index