Nuprl Lemma : imax-class-val

[Info,T:Type]. ∀[f:T ─→ ℤ]. ∀[es:EO+(Info)]. ∀[lb:ℤ]. ∀[X:EClass(T)]. ∀[e:E(X)].
  ((maximum f[v] ≥ lb with from X)(e) imax-list([lb map(λv.f[v];X(≤(X)(e)))]) ∈ ℤ)


Proof




Definitions occuring in Statement :  imax-class: (maximum f[v] ≥ lb with from X) es-interface-predecessors: (X)(e) eclass-vals: X(L) es-E-interface: E(X) eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) imax-list: imax-list(L) map: map(f;as) cons: [a b] uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ─→ B[x] int: universe: Type equal: t ∈ T
Lemmas :  list_accum-map list_accum_wf es-E-interface_wf es-interface-subtype_rel2 es-E_wf event-ordering+_subtype event-ordering+_wf top_wf Id_wf es-loc_wf es-interface-predecessors_wf imax_wf eclass-val_wf assert_elim in-eclass_wf subtype_base_sq bool_wf bool_subtype_base

Latex:
\mforall{}[Info,T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[es:EO+(Info)].  \mforall{}[lb:\mBbbZ{}].  \mforall{}[X:EClass(T)].  \mforall{}[e:E(X)].
    ((maximum  f[v]  \mgeq{}  lb  with  v  from  X)(e)  =  imax-list([lb  /  map(\mlambda{}v.f[v];X(\mleq{}(X)(e)))]))



Date html generated: 2015_07_20-PM-03_47_48
Last ObjectModification: 2015_01_27-PM-10_09_59

Home Index