Nuprl Lemma : list_accum-map

[L,y,f,g:Top].
  (accumulate (with value and list item a):
    f[x;a]
   over list:
     map(g;L)
   with starting value:
    y) accumulate (with value and list item a):
          f[x;g a]
         over list:
           L
         with starting value:
          y))


Proof




Definitions occuring in Statement :  map: map(f;as) list_accum: list_accum uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] apply: a sqequal: t
Definitions unfolded in proof :  map: map(f;as) uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] list_ind: list_ind nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: list_accum: list_accum so_apply: x[s1;s2] fun_exp: f^n primrec: primrec(n;b;c) top: Top so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: + so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] strict4: strict4(F) has-value: (a)↓ squash: T cons: [a b] so_lambda: λ2y.t[x; y] nil: [] it:
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf base_wf strictness-apply strictness-callbyvalue bottom-sqle decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel fun_exp_unroll_1 lifting-strict-callbyvalue has-value_wf_base is-exception_wf cbv_sqle int_subtype_base lifting-strict-ispair has-value-implies-dec-ispair-2 top_wf lifting-strict-isaxiom has-value-implies-dec-isaxiom-2 cbv_bottom_lemma istype-top
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut thin sqequalSqle lambdaFormation fixpointLeast extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomSqleEquality isect_memberEquality voidEquality unionElimination independent_pairFormation productElimination addEquality applyEquality intEquality minusEquality because_Cache dependent_set_memberEquality baseClosed callbyvalueCallbyvalue callbyvalueReduce baseApply closedConclusion callbyvalueExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation sqleReflexivity divergentSqle axiomSqEquality

Latex:
\mforall{}[L,y,f,g:Top].
    (accumulate  (with  value  x  and  list  item  a):
        f[x;a]
      over  list:
          map(g;L)
      with  starting  value:
        y)  \msim{}  accumulate  (with  value  x  and  list  item  a):
                    f[x;g  a]
                  over  list:
                      L
                  with  starting  value:
                    y))



Date html generated: 2019_06_20-PM-00_39_06
Last ObjectModification: 2018_09_26-PM-02_46_56

Theory : list_0


Home Index