Nuprl Lemma : lifting-strict-isaxiom
∀[F:Base]. ∀[p,q,r:Top].
∀[a,b,c:Top]. (F[if a = Ax then b otherwise c;p;q;r] ~ if a = Ax then F[b;p;q;r] otherwise F[c;p;q;r])
supposing strict4(λx,y,z,w. F[x;y;z;w])
Proof
Definitions occuring in Statement :
strict4: strict4(F)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s1;s2;s3;s4]
,
isaxiom: if z = Ax then a otherwise b
,
lambda: λx.A[x]
,
base: Base
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
strict4: strict4(F)
,
and: P ∧ Q
,
cand: A c∧ B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
has-value: (a)↓
,
or: P ∨ Q
,
top: Top
,
squash: ↓T
,
prop: ℙ
Lemmas referenced :
base_wf,
strict4_wf,
top_wf,
is-exception_wf,
has-value_wf_base,
has-value-implies-dec-isaxiom-2
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalSqle,
sqleRule,
thin,
divergentSqle,
sqequalHypSubstitution,
sqequalRule,
productElimination,
hypothesis,
dependent_functionElimination,
baseApply,
closedConclusion,
baseClosed,
hypothesisEquality,
independent_functionElimination,
callbyvalueIsaxiom,
lemma_by_obid,
unionElimination,
sqleReflexivity,
lambdaFormation,
because_Cache,
isect_memberEquality,
voidElimination,
voidEquality,
imageElimination,
axiomSqleEquality,
isaxiomExceptionCases,
exceptionSqequal,
isectElimination,
sqequalAxiom,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[F:Base]. \mforall{}[p,q,r:Top].
\mforall{}[a,b,c:Top].
(F[if a = Ax then b otherwise c;p;q;r] \msim{} if a = Ax then F[b;p;q;r] otherwise F[c;p;q;r])
supposing strict4(\mlambda{}x,y,z,w. F[x;y;z;w])
Date html generated:
2016_05_13-PM-03_41_35
Last ObjectModification:
2016_01_14-PM-07_08_59
Theory : computation
Home
Index