Nuprl Lemma : strict4_wf

[F:Base]. (strict4(F) ∈ ℙ)


Proof




Definitions occuring in Statement :  strict4: strict4(F) uall: [x:A]. B[x] prop: member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T strict4: strict4(F) prop: and: P ∧ Q so_lambda: λ2x.t[x] implies:  Q so_apply: x[s] all: x:A. B[x] or: P ∨ Q
Lemmas referenced :  or_wf squash_wf is-exception_wf sqequal-wf-base has-value_wf_base base_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality because_Cache functionEquality baseApply closedConclusion baseClosed hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[F:Base].  (strict4(F)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_23_46
Last ObjectModification: 2016_01_14-PM-06_45_52

Theory : call!by!value_1


Home Index