Nuprl Lemma : cbv_bottom_lemma
∀X:Top. (eval x = ⊥ in X[x] ~ ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
callbyvalue: callbyvalue, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
strictness-callbyvalue, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis
Latex:
\mforall{}X:Top.  (eval  x  =  \mbot{}  in  X[x]  \msim{}  \mbot{})
Date html generated:
2016_05_13-PM-03_45_15
Last ObjectModification:
2015_12_26-AM-09_50_56
Theory : computation
Home
Index