Step
*
1
of Lemma
loop-class-memory-no-input
1. Info : Type
2. B : Type
3. X : EClass(B ─→ B)
4. init : Id ─→ bag(B)
5. es : EO+(Info)
6. e : E@i
7. ∀e1:E
((e1 < e)
⇒ ((¬↑first(e1))
⇒ (¬↑pred(e1) ∈b X))
⇒ (loop-class-memory(X;init)(e1) = Prior(loop-class-memory(X;init))?init(e1) ∈ bag(B)))
8. (¬↑first(e))
⇒ (¬↑pred(e) ∈b X)@i
⊢ loop-class-memory(X;init)(e) = Prior(loop-class-memory(X;init))?init(e) ∈ bag(B)
BY
{ (Decide ⌈0 < #(init loc(e))⌉⋅ THENA Auto) }
1
1. Info : Type
2. B : Type
3. X : EClass(B ─→ B)
4. init : Id ─→ bag(B)
5. es : EO+(Info)
6. e : E@i
7. ∀e1:E
((e1 < e)
⇒ ((¬↑first(e1))
⇒ (¬↑pred(e1) ∈b X))
⇒ (loop-class-memory(X;init)(e1) = Prior(loop-class-memory(X;init))?init(e1) ∈ bag(B)))
8. (¬↑first(e))
⇒ (¬↑pred(e) ∈b X)@i
9. 0 < #(init loc(e))
⊢ loop-class-memory(X;init)(e) = Prior(loop-class-memory(X;init))?init(e) ∈ bag(B)
2
1. Info : Type
2. B : Type
3. X : EClass(B ─→ B)
4. init : Id ─→ bag(B)
5. es : EO+(Info)
6. e : E@i
7. ∀e1:E
((e1 < e)
⇒ ((¬↑first(e1))
⇒ (¬↑pred(e1) ∈b X))
⇒ (loop-class-memory(X;init)(e1) = Prior(loop-class-memory(X;init))?init(e1) ∈ bag(B)))
8. (¬↑first(e))
⇒ (¬↑pred(e) ∈b X)@i
9. ¬0 < #(init loc(e))
⊢ loop-class-memory(X;init)(e) = Prior(loop-class-memory(X;init))?init(e) ∈ bag(B)
Latex:
Latex:
1. Info : Type
2. B : Type
3. X : EClass(B {}\mrightarrow{} B)
4. init : Id {}\mrightarrow{} bag(B)
5. es : EO+(Info)
6. e : E@i
7. \mforall{}e1:E
((e1 < e)
{}\mRightarrow{} ((\mneg{}\muparrow{}first(e1)) {}\mRightarrow{} (\mneg{}\muparrow{}pred(e1) \mmember{}\msubb{} X))
{}\mRightarrow{} (loop-class-memory(X;init)(e1) = Prior(loop-class-memory(X;init))?init(e1)))
8. (\mneg{}\muparrow{}first(e)) {}\mRightarrow{} (\mneg{}\muparrow{}pred(e) \mmember{}\msubb{} X)@i
\mvdash{} loop-class-memory(X;init)(e) = Prior(loop-class-memory(X;init))?init(e)
By
Latex:
(Decide \mkleeneopen{}0 < \#(init loc(e))\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index