Step * 3 2 of Lemma loop-class-state-prior


1. Info Type
2. Type
3. EClass(B ─→ B)
4. init Id ─→ bag(B)
5. es EO+(Info)@i'
6. E@i
7. B
8. ¬↑first(e)
9. ∀e':E. ((e' <loc e)  (∀w:B. w ∈ loop-class-state(X;init)(e'))))
10. v ↓∈ init loc(e)
⊢ v ∈ loop-class-state(X;init)(pred(e))
BY
((InstHyp [⌈es-init(es;e)⌉(-2)⋅ THENA EAuto 1)
   THEN (InstLemma `loop-class-state-exists` [⌈Info⌉;⌈B⌉;⌈X⌉;⌈init⌉;⌈es⌉;⌈es-init(es;e)⌉]⋅ THENA Auto)
   THEN (-1)
   THEN (D (-2) THENA (BLemma `bag-size-bag-member` THEN Auto THEN THEN InstConcl [⌈v⌉]⋅ THEN Auto))
   THEN Assert ⌈False⌉⋅
   THEN Auto
   THEN SquashExRepD
   THEN InstHyp [⌈v1⌉(-4)⋅
   THEN Auto)⋅ }


Latex:



Latex:

1.  Info  :  Type
2.  B  :  Type
3.  X  :  EClass(B  {}\mrightarrow{}  B)
4.  init  :  Id  {}\mrightarrow{}  bag(B)
5.  es  :  EO+(Info)@i'
6.  e  :  E@i
7.  v  :  B
8.  \mneg{}\muparrow{}first(e)
9.  \mforall{}e':E.  ((e'  <loc  e)  {}\mRightarrow{}  (\mforall{}w:B.  (\mneg{}w  \mmember{}  loop-class-state(X;init)(e'))))
10.  v  \mdownarrow{}\mmember{}  init  loc(e)
\mvdash{}  v  \mmember{}  loop-class-state(X;init)(pred(e))


By


Latex:
((InstHyp  [\mkleeneopen{}es-init(es;e)\mkleeneclose{}]  (-2)\mcdot{}  THENA  EAuto  1)
  THEN  (InstLemma  `loop-class-state-exists`  [\mkleeneopen{}Info\mkleeneclose{};\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}init\mkleeneclose{};\mkleeneopen{}es\mkleeneclose{};\mkleeneopen{}es-init(es;e)\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  D  (-1)
  THEN  (D  (-2)
              THENA  (BLemma  `bag-size-bag-member`  THEN  Auto  THEN  D  0  THEN  InstConcl  [\mkleeneopen{}v\mkleeneclose{}]\mcdot{}  THEN  Auto)
              )
  THEN  Assert  \mkleeneopen{}False\mkleeneclose{}\mcdot{}
  THEN  Auto
  THEN  SquashExRepD
  THEN  InstHyp  [\mkleeneopen{}v1\mkleeneclose{}]  (-4)\mcdot{}
  THEN  Auto)\mcdot{}




Home Index