Step * of Lemma loop-class-state_wf

[Info,B:Type]. ∀[X:EClass(B ─→ B)]. ∀[init:Id ─→ bag(B)].  (loop-class-state(X;init) ∈ EClass(B))
BY
(Auto
   THEN Unfold `eclass` 0
   THEN RepeatFor ((BetterExt THEN Auto))
   THEN MoveToConcl (-1)
   THEN CausalInd'
   THEN RecUnfold `loop-class-state` 0
   THEN RepUR ``eclass-cond`` 0
   THEN Assert ⌈Prior(loop-class-state(X;init))?init(e) ∈ bag(B)⌉⋅}

1
.....assertion..... 
1. Info Type
2. Type
3. EClass(B ─→ B)
4. init Id ─→ bag(B)
5. es EO+(Info)@i'
6. E@i
7. ∀e1:E. ((e1 < e)  (loop-class-state(X;init) es e1 ∈ bag(B)))
⊢ Prior(loop-class-state(X;init))?init(e) ∈ bag(B)

2
1. Info Type
2. Type
3. EClass(B ─→ B)
4. init Id ─→ bag(B)
5. es EO+(Info)@i'
6. E@i
7. ∀e1:E. ((e1 < e)  (loop-class-state(X;init) es e1 ∈ bag(B)))
8. Prior(loop-class-state(X;init))?init(e) ∈ bag(B)
⊢ if e ∈b then eclass3(X;Prior(loop-class-state(X;init))?init)(e) else Prior(loop-class-state(X;init))?init(e) fi 
  ∈ bag(B)


Latex:



Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  B)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].    (loop-class-state(X;init)  \mmember{}  EClass(B))


By


Latex:
(Auto
  THEN  Unfold  `eclass`  0
  THEN  RepeatFor  2  ((BetterExt  THEN  Auto))
  THEN  MoveToConcl  (-1)
  THEN  CausalInd'
  THEN  RecUnfold  `loop-class-state`  0
  THEN  RepUR  ``eclass-cond``  0
  THEN  Assert  \mkleeneopen{}Prior(loop-class-state(X;init))?init(e)  \mmember{}  bag(B)\mkleeneclose{}\mcdot{})




Home Index