Step
*
3
of Lemma
lpath_cons
1. l : IdLnk
2. p : IdLnk List
3. lpath([l / p])
4. ¬(||p|| = 0 ∈ ℤ)
⊢ ¬(hd(p) = lnk-inv(l) ∈ IdLnk)
BY
{ ((((Unfold `lpath` (-2)) THEN (InstHyp [⌈0⌉] (-2))⋅) THENA Auto')
THEN (Reduce (-1))
THEN Auto
THEN (NthHypEq (-1))
THEN EqCD
THEN Auto
THEN EqCD
THEN Auto
THEN DVar `p'
THEN All Reduce
THEN Auto') }
Latex:
1. l : IdLnk
2. p : IdLnk List
3. lpath([l / p])
4. \mneg{}(||p|| = 0)
\mvdash{} \mneg{}(hd(p) = lnk-inv(l))
By
((((Unfold `lpath` (-2)) THEN (InstHyp [\mkleeneopen{}0\mkleeneclose{}] (-2))\mcdot{}) THENA Auto')
THEN (Reduce (-1))
THEN Auto
THEN (NthHypEq (-1))
THEN EqCD
THEN Auto
THEN EqCD
THEN Auto
THEN DVar `p'
THEN All Reduce
THEN Auto')
Home
Index