Nuprl Lemma : lpath_cons

[l:IdLnk]. ∀[p:IdLnk List].
  uiff(lpath([l p]);lpath(p)
  ∧ (destination(l) source(hd(p)) ∈ Id) ∧ (hd(p) lnk-inv(l) ∈ IdLnk)) supposing ¬(||p|| 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  lpath: lpath(p) ldst: destination(l) lsrc: source(l) lnk-inv: lnk-inv(l) IdLnk: IdLnk Id: Id hd: hd(l) length: ||as|| cons: [a b] list: List uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q natural_number: $n int: equal: t ∈ T
Lemmas :  equal_wf IdLnk_wf hd_wf length_wf non_neg_length length_wf_nat lnk-inv_wf not_wf equal-wf-T-base select_wf int_seg_wf subtract_wf lpath_wf cons_wf Id_wf ldst_wf lsrc_wf list_wf trivial-int-eq1 length_of_cons_lemma squash_wf true_wf select_cons_tl iff_weakening_equal select0 list-cases product_subtype_list length_of_nil_lemma less_than_transitivity1 less_than_irreflexivity length_cons reduce_hd_cons_lemma general_arith_equation1 decidable__equal_int subtype_base_sq int_subtype_base
\mforall{}[l:IdLnk].  \mforall{}[p:IdLnk  List].
    uiff(lpath([l  /  p]);lpath(p)
    \mwedge{}  (destination(l)  =  source(hd(p)))  \mwedge{}  (\mneg{}(hd(p)  =  lnk-inv(l)))  supposing  \mneg{}(||p||  =  0))



Date html generated: 2015_07_17-AM-09_12_33
Last ObjectModification: 2015_02_04-PM-05_07_59

Home Index