Nuprl Lemma : lpath_wf
∀[p:IdLnk List]. (lpath(p) ∈ ℙ)
Proof
Definitions occuring in Statement :
lpath: lpath(p)
,
IdLnk: IdLnk
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Lemmas :
all_wf,
int_seg_wf,
subtract_wf,
length_wf,
IdLnk_wf,
Id_wf,
ldst_wf,
select_wf,
sq_stable__le,
decidable__lt,
false_wf,
less-iff-le,
condition-implies-le,
add-associates,
minus-add,
minus-one-mul,
add-swap,
add-commutes,
add_functionality_wrt_le,
le-add-cancel2,
lsrc_wf,
decidable__le,
not-le-2,
zero-add,
add-zero,
le-add-cancel,
not_wf,
equal_wf,
lnk-inv_wf,
list_wf
\mforall{}[p:IdLnk List]. (lpath(p) \mmember{} \mBbbP{})
Date html generated:
2015_07_17-AM-09_12_31
Last ObjectModification:
2015_01_28-AM-07_56_57
Home
Index