Nuprl Lemma : trivial-int-eq1

[x,y:ℤ].  (((x y) x) ∧ (y (x y) x) ∧ ((x y) x) ∧ (y x))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] and: P ∧ Q subtract: m add: m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B top: Top uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A prop: sq_type: SQType(T) guard: {T}
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermVar_wf itermSubtract_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int int_subtype_base subtype_base_sq add-subtract-cancel add-commutes subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation sqequalRule because_Cache isect_memberEquality voidElimination voidEquality instantiate independent_isectElimination dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll equalityTransitivity equalitySymmetry independent_functionElimination productElimination independent_pairEquality sqequalAxiom

Latex:
\mforall{}[x,y:\mBbbZ{}].    (((x  -  y)  +  y  \msim{}  x)  \mwedge{}  (y  +  (x  -  y)  \msim{}  x)  \mwedge{}  ((x  +  y)  -  y  \msim{}  x)  \mwedge{}  (y  -  y  -  x  \msim{}  x))



Date html generated: 2016_05_15-PM-03_23_21
Last ObjectModification: 2016_01_16-AM-10_47_43

Theory : general


Home Index