Step
*
1
1
2
2
of Lemma
max-fst-property
1. [Info] : Type
2. [A] : Type
3. es : EO+(Info)@i'
4. X : EClass(ℤ × A)@i'
5. e : E@i
6. ↑e ∈b MaxFst(X)@i
7. fst(accum_list(p1,e.if fst(p1) <z fst(X(e)) then X(e) else p1 fi ;e.X(e);≤(X)(e)))
~ imax-list(map(λe.(fst(X(e)));≤(X)(e)))
8. ∀L:E(X) List. ∀e:E(X).
∃e':E(X)
(((e' ∈ L) ∨ (e' = e ∈ E(X)))
∧ (accumulate (with value p1 and list item e):
if fst(p1) <z fst(X(e)) then X(e) else p1 fi
over list:
L
with starting value:
X(e))
= X(e')
∈ (ℤ × A)))
⊢ ∃mxe:E(X)
(mxe ≤loc e
∧ (accum_list(p1,e.if fst(p1) <z fst(X(e)) then X(e) else p1 fi ;e.X(e);≤(X)(e)) = X(mxe) ∈ (ℤ × A))
∧ (∀e':E(X). (e' ≤loc e
⇒ ((fst(X(e'))) ≤ (fst(X(mxe)))))))
BY
{ ((GenConcl ⌈≤(X)(e) = L ∈ (E(X) List)⌉ ⋅ THENA Auto) THEN D -2 THEN Reduce 0)⋅ }
1
1. [Info] : Type
2. [A] : Type
3. es : EO+(Info)@i'
4. X : EClass(ℤ × A)@i'
5. e : E@i
6. ↑e ∈b MaxFst(X)@i
7. fst(accum_list(p1,e.if fst(p1) <z fst(X(e)) then X(e) else p1 fi ;e.X(e);≤(X)(e)))
~ imax-list(map(λe.(fst(X(e)));≤(X)(e)))
8. ∀L:E(X) List. ∀e:E(X).
∃e':E(X)
(((e' ∈ L) ∨ (e' = e ∈ E(X)))
∧ (accumulate (with value p1 and list item e):
if fst(p1) <z fst(X(e)) then X(e) else p1 fi
over list:
L
with starting value:
X(e))
= X(e')
∈ (ℤ × A)))
9. ≤(X)(e) = [] ∈ (E(X) List)@i
⊢ ∃mxe:E(X)
(mxe ≤loc e
∧ (accum_list(p1,e.if fst(p1) <z fst(X(e)) then X(e) else p1 fi ;e.X(e);[]) = X(mxe) ∈ (ℤ × A))
∧ (∀e':E(X). (e' ≤loc e
⇒ ((fst(X(e'))) ≤ (fst(X(mxe)))))))
2
1. [Info] : Type
2. [A] : Type
3. es : EO+(Info)@i'
4. X : EClass(ℤ × A)@i'
5. e : E@i
6. ↑e ∈b MaxFst(X)@i
7. fst(accum_list(p1,e.if fst(p1) <z fst(X(e)) then X(e) else p1 fi ;e.X(e);≤(X)(e)))
~ imax-list(map(λe.(fst(X(e)));≤(X)(e)))
8. ∀L:E(X) List. ∀e:E(X).
∃e':E(X)
(((e' ∈ L) ∨ (e' = e ∈ E(X)))
∧ (accumulate (with value p1 and list item e):
if fst(p1) <z fst(X(e)) then X(e) else p1 fi
over list:
L
with starting value:
X(e))
= X(e')
∈ (ℤ × A)))
9. u : E(X)
10. v : E(X) List
11. ≤(X)(e) = [u / v] ∈ (E(X) List)@i
⊢ ∃mxe:E(X)
(mxe ≤loc e
∧ (accumulate (with value p1 and list item e):
if fst(p1) <z fst(X(e)) then X(e) else p1 fi
over list:
v
with starting value:
X(u))
= X(mxe)
∈ (ℤ × A))
∧ (∀e':E(X). (e' ≤loc e
⇒ ((fst(X(e'))) ≤ (fst(X(mxe)))))))
Latex:
Latex:
1. [Info] : Type
2. [A] : Type
3. es : EO+(Info)@i'
4. X : EClass(\mBbbZ{} \mtimes{} A)@i'
5. e : E@i
6. \muparrow{}e \mmember{}\msubb{} MaxFst(X)@i
7. fst(accum\_list(p1,e.if fst(p1) <z fst(X(e)) then X(e) else p1 fi ;e.X(e);\mleq{}(X)(e)))
\msim{} imax-list(map(\mlambda{}e.(fst(X(e)));\mleq{}(X)(e)))
8. \mforall{}L:E(X) List. \mforall{}e:E(X).
\mexists{}e':E(X)
(((e' \mmember{} L) \mvee{} (e' = e))
\mwedge{} (accumulate (with value p1 and list item e):
if fst(p1) <z fst(X(e)) then X(e) else p1 fi
over list:
L
with starting value:
X(e))
= X(e')))
\mvdash{} \mexists{}mxe:E(X)
(mxe \mleq{}loc e
\mwedge{} (accum\_list(p1,e.if fst(p1) <z fst(X(e)) then X(e) else p1 fi ;e.X(e);\mleq{}(X)(e)) = X(mxe))
\mwedge{} (\mforall{}e':E(X). (e' \mleq{}loc e {}\mRightarrow{} ((fst(X(e'))) \mleq{} (fst(X(mxe)))))))
By
Latex:
((GenConcl \mkleeneopen{}\mleq{}(X)(e) = L\mkleeneclose{} \mcdot{} THENA Auto) THEN D -2 THEN Reduce 0)\mcdot{}
Home
Index