Nuprl Lemma : max-fst-property

[Info,A,T:Type].
  ∀es:EO+(Info). ∀X:EClass(T × A). ∀e:E.
    {(fst(MaxFst(X)(e)) imax-list(map(λe.(fst(X(e)));≤(X)(e))))
    ∧ (∃mxe:E(X)
        (mxe ≤loc 
        ∧ (MaxFst(X)(e) X(mxe) ∈ (T × A))
        ∧ (∀e':E(X). (e' ≤loc e   ((fst(X(e'))) ≤ (fst(X(mxe))))))))} 
    supposing ↑e ∈b MaxFst(X) 
  supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  max-fst-class: MaxFst(X) es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e ≤loc e'  es-E: E imax-list: imax-list(L) map: map(f;as) assert: b uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} pi1: fst(t) le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q lambda: λx.A[x] product: x:A × B[x] int: universe: Type sqequal: t equal: t ∈ T
Lemmas :  max-fst-val assert_wf in-eclass_wf max-fst-class_wf subtype_rel_self es-interface-subtype_rel2 es-E_wf event-ordering+_subtype event-ordering+_wf top_wf subtype_top eclass_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base colength_wf_list list-cases list_accum_nil_lemma map_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base list_accum_cons_lemma map_cons_lemma list_wf es-E-interface_wf subtype_rel_product pi1_wf_top list_accum_wf lt_int_wf eclass-val_wf assert_elim bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal assert-bnot imax_wf le_int_wf map_wf assert_of_le_int iseg_wf append_wf cons_wf nil_wf decidable__equal_int not-equal-2 list_accum_functionality imax_unfold iff_weakening_equal es-interface-predecessors_wf subtype_rel_list Id_wf es-loc_wf reduce_tl_nil_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma is-max-fst es-interface-predecessors-nonempty length_wf_nat length_wf length_of_nil_lemma list_induction all_wf exists_wf or_wf l_member_wf cons_member accum_list_cons_lemma es-le_wf member-interface-predecessors non_neg_length length_cons accum_list_wf le_weakening length_of_cons_lemma decidable__lt squash_wf true_wf imax-list-ub map_length_nat set_wf cons_neq_nil l_exists_iff member_map es-le-loc sq_stable__assert member-interface-predecessors-subtype assert_witness subtype_rel_wf

Latex:
\mforall{}[Info,A,T:Type].
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(T  \mtimes{}  A).  \mforall{}e:E.
        \{(fst(MaxFst(X)(e))  \msim{}  imax-list(map(\mlambda{}e.(fst(X(e)));\mleq{}(X)(e))))
        \mwedge{}  (\mexists{}mxe:E(X)
                (mxe  \mleq{}loc  e 
                \mwedge{}  (MaxFst(X)(e)  =  X(mxe))
                \mwedge{}  (\mforall{}e':E(X).  (e'  \mleq{}loc  e    {}\mRightarrow{}  ((fst(X(e')))  \mleq{}  (fst(X(mxe))))))))\} 
        supposing  \muparrow{}e  \mmember{}\msubb{}  MaxFst(X) 
    supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2015_07_21-PM-03_38_43
Last ObjectModification: 2015_02_04-PM-06_19_23

Home Index