Nuprl Lemma : max-fst-val

[Info,A,T:Type].
  ∀[es:EO+(Info)]. ∀[X:EClass(T × A)]. ∀[e:E].
    MaxFst(X)(e) accum_list(p1,e.if fst(p1) <fst(X(e)) then X(e) else p1 fi ;e.X(e);≤(X)(e)) 
    supposing ↑e ∈b MaxFst(X) 
  supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  max-fst-class: MaxFst(X) es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E accum_list: accum_list(a,x.f[a; x];x.base[x];L) assert: b ifthenelse: if then else fi  lt_int: i <j uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] pi1: fst(t) product: x:A × B[x] int: universe: Type sqequal: t
Lemmas :  max-f-class-val assert_wf in-eclass_wf max-fst-class_wf es-interface-subtype_rel2 es-E_wf event-ordering+_subtype event-ordering+_wf top_wf subtype_top eclass_wf subtype_rel_wf

Latex:
\mforall{}[Info,A,T:Type].
    \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(T  \mtimes{}  A)].  \mforall{}[e:E].
        MaxFst(X)(e)  \msim{}  accum\_list(p1,e.if  fst(p1)  <z  fst(X(e))  then  X(e)  else  p1  fi  ;e.X(e);\mleq{}(X)(e)) 
        supposing  \muparrow{}e  \mmember{}\msubb{}  MaxFst(X) 
    supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2015_07_20-PM-03_51_17
Last ObjectModification: 2015_01_27-PM-10_08_00

Home Index