Nuprl Lemma : imax-list-ub

L:ℤ List. ∀a:ℤ.  a ≤ imax-list(L) ⇐⇒ (∃b∈L. a ≤ b) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) l_exists: (∃x∈L. P[x]) length: ||as|| list: List less_than: a < b uimplies: supposing a le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q iff: ⇐⇒ Q and: P ∧ Q prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q cand: c∧ B assoc: Assoc(T;op) infix_ap: y squash: T true: True subtype_rel: A ⊆B guard: {T} imax-list: imax-list(L)
Lemmas referenced :  member-less_than length_wf combine-list-rel-or imax_wf le_wf imax_ub all_wf iff_wf or_wf equal_wf squash_wf true_wf imax_assoc iff_weakening_equal less_than_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality intEquality hypothesisEquality hypothesis independent_isectElimination rename because_Cache dependent_functionElimination sqequalRule lambdaEquality independent_functionElimination independent_pairFormation addLevel allFunctionality productElimination impliesFunctionality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed isect_memberEquality axiomEquality

Latex:
\mforall{}L:\mBbbZ{}  List.  \mforall{}a:\mBbbZ{}.    a  \mleq{}  imax-list(L)  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}b\mmember{}L.  a  \mleq{}  b)  supposing  0  <  ||L||



Date html generated: 2017_04_14-AM-09_23_47
Last ObjectModification: 2017_02_27-PM-03_58_27

Theory : list_1


Home Index