Nuprl Lemma : list_accum_functionality

[T,A:Type]. ∀[f,g:T ⟶ A ⟶ T]. ∀[L:A List]. ∀[y,z:T].
  (accumulate (with value and list item a):
    f[x;a]
   over list:
     L
   with starting value:
    y)
     accumulate (with value and list item a):
        g[x;a]
       over list:
         L
       with starting value:
        z)
     ∈ T) supposing 
     ((y z ∈ T) and 
     (∀L':A List. ∀a:A.
        (L' [a] ≤ L
         (f[accumulate (with value and list item a):
               f[x;a]
              over list:
                L'
              with starting value:
               y);a]
           g[accumulate (with value and list item a):
                f[x;a]
               over list:
                 L'
               with starting value:
                y);a]
           ∈ T))))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 append: as bs list_accum: list_accum cons: [a b] nil: [] list: List uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] so_apply: x[s1;s2] all: x:A. B[x] so_lambda: λ2y.t[x; y] guard: {T} top: Top subtype_rel: A ⊆B squash: T true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  last_induction all_wf equal_wf list_accum_wf list_wf iseg_wf append_wf cons_wf nil_wf list_accum_nil_lemma subtype_rel_list top_wf list_accum_cons_lemma list_accum_append squash_wf true_wf iseg_weakening iff_weakening_equal iseg_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity because_Cache functionEquality hypothesis applyEquality functionExtensionality independent_functionElimination dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry voidElimination voidEquality lambdaFormation independent_isectElimination imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[f,g:T  {}\mrightarrow{}  A  {}\mrightarrow{}  T].  \mforall{}[L:A  List].  \mforall{}[y,z:T].
    (accumulate  (with  value  x  and  list  item  a):
        f[x;a]
      over  list:
          L
      with  starting  value:
        y)
          =  accumulate  (with  value  x  and  list  item  a):
                g[x;a]
              over  list:
                  L
              with  starting  value:
                z))  supposing 
          ((y  =  z)  and 
          (\mforall{}L':A  List.  \mforall{}a:A.
                (L'  @  [a]  \mleq{}  L
                {}\mRightarrow{}  (f[accumulate  (with  value  x  and  list  item  a):
                              f[x;a]
                            over  list:
                                L'
                            with  starting  value:
                              y);a]
                      =  g[accumulate  (with  value  x  and  list  item  a):
                                f[x;a]
                              over  list:
                                  L'
                              with  starting  value:
                                y);a]))))



Date html generated: 2017_04_17-AM-07_37_35
Last ObjectModification: 2017_02_27-PM-04_11_59

Theory : list_1


Home Index