Nuprl Lemma : list_accum_append

[A:Top List]. ∀[B,y,f:Top].
  (accumulate (with value and list item a):
    f[x;a]
   over list:
     B
   with starting value:
    y) accumulate (with value and list item a):
          f[x;a]
         over list:
           B
         with starting value:
          accumulate (with value and list item a):
           f[x;a]
          over list:
            A
          with starting value:
           y)))


Proof




Definitions occuring in Statement :  append: as bs list_accum: list_accum list: List uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] colength: colength(L) squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf top_wf equal-wf-T-base nat_wf colength_wf_list list_wf list-cases list_ind_nil_lemma list_accum_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base list_ind_cons_lemma list_accum_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom applyEquality because_Cache unionElimination voidEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality imageMemberEquality baseClosed imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality equalityTransitivity equalitySymmetry intEquality instantiate cumulativity

Latex:
\mforall{}[A:Top  List].  \mforall{}[B,y,f:Top].
    (accumulate  (with  value  x  and  list  item  a):
        f[x;a]
      over  list:
          A  @  B
      with  starting  value:
        y)  \msim{}  accumulate  (with  value  x  and  list  item  a):
                    f[x;a]
                  over  list:
                      B
                  with  starting  value:
                    accumulate  (with  value  x  and  list  item  a):
                      f[x;a]
                    over  list:
                        A
                    with  starting  value:
                      y)))



Date html generated: 2017_04_14-AM-08_35_08
Last ObjectModification: 2017_02_27-PM-03_27_14

Theory : list_0


Home Index