Nuprl Lemma : member-fpf-domain-variant

[A,V:Type].  ∀f:a:A fp-> V × Top. ∀eq:EqDecider(A). ∀x:A.  (↑x ∈ dom(f) ⇐⇒ (x ∈ fpf-domain(f)))


Proof




Definitions occuring in Statement :  fpf-domain: fpf-domain(f) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) l_member: (x ∈ l) assert: b uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: ⇐⇒ Q product: x:A × B[x] universe: Type
Lemmas :  l_member_wf assert-deq-member assert_wf deq-member_wf iff_wf deq_wf fpf_wf top_wf
\mforall{}[A,V:Type].    \mforall{}f:a:A  fp->  V  \mtimes{}  Top.  \mforall{}eq:EqDecider(A).  \mforall{}x:A.    (\muparrow{}x  \mmember{}  dom(f)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  fpf-domain(f)))



Date html generated: 2015_07_17-AM-09_15_45
Last ObjectModification: 2015_01_28-AM-07_52_33

Home Index