Step
*
1
1
of Lemma
primed-class-opt-classrel
1. T : Type
2. Info : Type
3. X : EClass(T)
4. init : Id ─→ bag(T)
5. es : EO+(Info)
6. e : E
7. v : T
8. P : E ─→ 𝔹@i
9. (λe'.0 <z #(X es e')) = P ∈ (E ─→ 𝔹)@i
10. Q : E ─→ ℙ@i'
11. (λe'.(↓∃w:T. w ↓∈ X es e')) = Q ∈ (E ─→ ℙ)@i'
12. x : ∃e':{E| ((e' <loc e) ∧ (↑(P e')) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑(P e'')))))}@i
13. (last(P) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e) ∧ (↑(P e')) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑(P e'')))))})
∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑(P e')))})))@i
14. ¬↑first(e)
15. ((↑(P pred(e))) ∧ (x = pred(e) ∈ E)) ∨ ((¬↑(P pred(e))) ∧ (↑isl(last(P) pred(e))) ∧ (x = outl(last(P) pred(e)) ∈ E))
16. v ↓∈ X es x
⊢ ↓(∃e':E. ((es-p-local-pred(es;Q) e e') ∧ v ↓∈ X es e'))
∨ ((∀e':E. ((e' <loc e)
⇒ (∀w:T. (¬w ↓∈ X es e')))) ∧ v ↓∈ init loc(e))
BY
{ (DVar `x'
THEN Try (Unhide)
THEN (D 0 THEN OrLeft THEN Auto)
THEN (With ⌈x⌉ (D 0)⋅ THEN Auto)
THEN RepUR ``es-p-local-pred`` 0
THEN Auto) }
1
1. T : Type
2. Info : Type
3. X : EClass(T)
4. init : Id ─→ bag(T)
5. es : EO+(Info)
6. e : E
7. v : T
8. P : E ─→ 𝔹@i
9. (λe'.0 <z #(X es e')) = P ∈ (E ─→ 𝔹)@i
10. Q : E ─→ ℙ@i'
11. (λe'.(↓∃w:T. w ↓∈ X es e')) = Q ∈ (E ─→ ℙ)@i'
12. x : E@i
13. (x <loc e)@i
14. ↑(P x)@i
15. ∀e'':E. ((x <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑(P e'')))@i
16. (last(P) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e) ∧ (↑(P e')) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑(P e'')))))})
∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑(P e')))})))@i
17. ¬↑first(e)
18. ((↑(P pred(e))) ∧ (x = pred(e) ∈ E)) ∨ ((¬↑(P pred(e))) ∧ (↑isl(last(P) pred(e))) ∧ (x = outl(last(P) pred(e)) ∈ E))
19. v ↓∈ X es x
20. (x <loc e)
⊢ Q x
2
1. T : Type
2. Info : Type
3. X : EClass(T)
4. init : Id ─→ bag(T)
5. es : EO+(Info)
6. e : E
7. v : T
8. P : E ─→ 𝔹@i
9. (λe'.0 <z #(X es e')) = P ∈ (E ─→ 𝔹)@i
10. Q : E ─→ ℙ@i'
11. (λe'.(↓∃w:T. w ↓∈ X es e')) = Q ∈ (E ─→ ℙ)@i'
12. x : E@i
13. (x <loc e)@i
14. ↑(P x)@i
15. ∀e'':E. ((x <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑(P e'')))@i
16. (last(P) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e) ∧ (↑(P e')) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑(P e'')))))})
∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑(P e')))})))@i
17. ¬↑first(e)
18. ((↑(P pred(e))) ∧ (x = pred(e) ∈ E)) ∨ ((¬↑(P pred(e))) ∧ (↑isl(last(P) pred(e))) ∧ (x = outl(last(P) pred(e)) ∈ E))
19. v ↓∈ X es x
20. (x <loc e)
21. Q x
22. e'' : E@i
23. (e'' <loc e)@i
24. (x <loc e'')@i
⊢ ¬(Q e'')
Latex:
Latex:
1. T : Type
2. Info : Type
3. X : EClass(T)
4. init : Id {}\mrightarrow{} bag(T)
5. es : EO+(Info)
6. e : E
7. v : T
8. P : E {}\mrightarrow{} \mBbbB{}@i
9. (\mlambda{}e'.0 <z \#(X es e')) = P@i
10. Q : E {}\mrightarrow{} \mBbbP{}@i'
11. (\mlambda{}e'.(\mdownarrow{}\mexists{}w:T. w \mdownarrow{}\mmember{} X es e')) = Q@i'
12. x : \mexists{}e':\{E
((e' <loc e) \mwedge{} (\muparrow{}(P e')) \mwedge{} (\mforall{}e'':E. ((e' <loc e'') {}\mRightarrow{} (e'' <loc e) {}\mRightarrow{} (\mneg{}\muparrow{}(P e'')))))\}@i
13. (last(P) e) = (inl x)@i
14. \mneg{}\muparrow{}first(e)
15. ((\muparrow{}(P pred(e))) \mwedge{} (x = pred(e)))
\mvee{} ((\mneg{}\muparrow{}(P pred(e))) \mwedge{} (\muparrow{}isl(last(P) pred(e))) \mwedge{} (x = outl(last(P) pred(e))))
16. v \mdownarrow{}\mmember{} X es x
\mvdash{} \mdownarrow{}(\mexists{}e':E. ((es-p-local-pred(es;Q) e e') \mwedge{} v \mdownarrow{}\mmember{} X es e'))
\mvee{} ((\mforall{}e':E. ((e' <loc e) {}\mRightarrow{} (\mforall{}w:T. (\mneg{}w \mdownarrow{}\mmember{} X es e')))) \mwedge{} v \mdownarrow{}\mmember{} init loc(e))
By
Latex:
(DVar `x'
THEN Try (Unhide)
THEN (D 0 THEN OrLeft THEN Auto)
THEN (With \mkleeneopen{}x\mkleeneclose{} (D 0)\mcdot{} THEN Auto)
THEN RepUR ``es-p-local-pred`` 0
THEN Auto)
Home
Index