Step
*
of Lemma
primed-classrel-opt
∀[Info,T:Type]. ∀[X:EClass(T)]. ∀[b:Id ─→ bag(T)]. ∀[es:EO+(Info)]. ∀[v:T]. ∀[e:E].
  uiff(v ∈ Prior(X)?b(e);↓∃e'<e.v ∈ X(e') ∧ ∀e''<e.∀w:T. (w ∈ X(e'') 
⇒ e'' ≤loc e' )
                          ∨ (v ↓∈ b loc(e) ∧ ∀e'<e.∀w:T. (¬w ∈ X(e'))))
BY
{ (Auto
   THEN Try ((Unhide THEN Auto))
   THEN (MoveToConcl (-1)
         THEN RepUR ``classrel primed-class-opt`` 0
         THEN ((GenConclAtAddr[2;3;1] THENA Auto) ORELSE (GenConclAtAddr[1;3;1] THENA Auto))
         THEN (Reduce (-2) THEN D -2 THEN Reduce 0 THEN Auto)⋅)⋅) }
1
1. Info : Type
2. T : Type
3. X : EClass(T)
4. b : Id ─→ bag(T)
5. es : EO+(Info)
6. v : T
7. e : E
8. x : ∃e':{E| ((e' <loc e) ∧ (↑0 <z #(X es e')) ∧ (∀e'':E. ((e' <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑0 <z #(X es e'')))))}@i
9. (last(λe'.0 <z #(X es e')) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e)
            ∧ (↑((λe'.0 <z #(X es e')) e'))
            ∧ (∀e'':E. ((e' <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑((λe'.0 <z #(X es e')) e'')))))})
  ∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe'.0 <z #(X es e')) e')))})))@i
10. v ↓∈ X es x@i
⊢ ↓∃e'<e.v ↓∈ X es e' ∧ ∀e''<e.∀w:T. (w ↓∈ X es e'' 
⇒ e'' ≤loc e' ) ∨ (v ↓∈ b loc(e) ∧ ∀e'<e.∀w:T. (¬w ↓∈ X es e'))
2
1. Info : Type
2. T : Type
3. X : EClass(T)
4. b : Id ─→ bag(T)
5. es : EO+(Info)
6. v : T
7. e : E
8. y : ¬(∃e':{E| ((e' <loc e) ∧ (↑0 <z #(X es e')))})@i
9. (last(λe'.0 <z #(X es e')) e)
= (inr y )
∈ ((∃e':{E| ((e' <loc e)
            ∧ (↑((λe'.0 <z #(X es e')) e'))
            ∧ (∀e'':E. ((e' <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑((λe'.0 <z #(X es e')) e'')))))})
  ∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe'.0 <z #(X es e')) e')))})))@i
10. v ↓∈ b loc(e)@i
⊢ ↓∃e'<e.v ↓∈ X es e' ∧ ∀e''<e.∀w:T. (w ↓∈ X es e'' 
⇒ e'' ≤loc e' ) ∨ (v ↓∈ b loc(e) ∧ ∀e'<e.∀w:T. (¬w ↓∈ X es e'))
3
1. Info : Type
2. T : Type
3. X : EClass(T)
4. b : Id ─→ bag(T)
5. es : EO+(Info)
6. v : T
7. e : E
8. x : ∃e':{E| ((e' <loc e) ∧ (↑0 <z #(X es e')) ∧ (∀e'':E. ((e' <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑0 <z #(X es e'')))))}@i
9. (last(λe'.0 <z #(X es e')) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e)
            ∧ (↑((λe'.0 <z #(X es e')) e'))
            ∧ (∀e'':E. ((e' <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑((λe'.0 <z #(X es e')) e'')))))})
  ∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe'.0 <z #(X es e')) e')))})))@i
10. ↓∃e'<e.v ↓∈ X es e' ∧ ∀e''<e.∀w:T. (w ↓∈ X es e'' 
⇒ e'' ≤loc e' ) ∨ (v ↓∈ b loc(e) ∧ ∀e'<e.∀w:T. (¬w ↓∈ X es e'))@i
⊢ v ↓∈ X es x
4
1. Info : Type
2. T : Type
3. X : EClass(T)
4. b : Id ─→ bag(T)
5. es : EO+(Info)
6. v : T
7. e : E
8. y : ¬(∃e':{E| ((e' <loc e) ∧ (↑0 <z #(X es e')))})@i
9. (last(λe'.0 <z #(X es e')) e)
= (inr y )
∈ ((∃e':{E| ((e' <loc e)
            ∧ (↑((λe'.0 <z #(X es e')) e'))
            ∧ (∀e'':E. ((e' <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑((λe'.0 <z #(X es e')) e'')))))})
  ∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe'.0 <z #(X es e')) e')))})))@i
10. ↓∃e'<e.v ↓∈ X es e' ∧ ∀e''<e.∀w:T. (w ↓∈ X es e'' 
⇒ e'' ≤loc e' ) ∨ (v ↓∈ b loc(e) ∧ ∀e'<e.∀w:T. (¬w ↓∈ X es e'))@i
⊢ v ↓∈ b loc(e)
Latex:
Latex:
\mforall{}[Info,T:Type].  \mforall{}[X:EClass(T)].  \mforall{}[b:Id  {}\mrightarrow{}  bag(T)].  \mforall{}[es:EO+(Info)].  \mforall{}[v:T].  \mforall{}[e:E].
    uiff(v  \mmember{}  Prior(X)?b(e);\mdownarrow{}\mexists{}e'<e.v  \mmember{}  X(e')  \mwedge{}  \mforall{}e''<e.\mforall{}w:T.  (w  \mmember{}  X(e'')  {}\mRightarrow{}  e''  \mleq{}loc  e'  )
                                                    \mvee{}  (v  \mdownarrow{}\mmember{}  b  loc(e)  \mwedge{}  \mforall{}e'<e.\mforall{}w:T.  (\mneg{}w  \mmember{}  X(e'))))
By
Latex:
(Auto
  THEN  Try  ((Unhide  THEN  Auto))
  THEN  (MoveToConcl  (-1)
              THEN  RepUR  ``classrel  primed-class-opt``  0
              THEN  ((GenConclAtAddr[2;3;1]  THENA  Auto)  ORELSE  (GenConclAtAddr[1;3;1]  THENA  Auto))
              THEN  (Reduce  (-2)  THEN  D  -2  THEN  Reduce  0  THEN  Auto)\mcdot{})\mcdot{})
Home
Index