Step
*
1
of Lemma
primed-classrel-opt
1. Info : Type
2. T : Type
3. X : EClass(T)
4. b : Id ─→ bag(T)
5. es : EO+(Info)
6. v : T
7. e : E
8. x : ∃e':{E| ((e' <loc e) ∧ (↑0 <z #(X es e')) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑0 <z #(X es e'')))))}@i
9. (last(λe'.0 <z #(X es e')) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e)
∧ (↑((λe'.0 <z #(X es e')) e'))
∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑((λe'.0 <z #(X es e')) e'')))))})
∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe'.0 <z #(X es e')) e')))})))@i
10. v ↓∈ X es x@i
⊢ ↓∃e'<e.v ↓∈ X es e' ∧ ∀e''<e.∀w:T. (w ↓∈ X es e''
⇒ e'' ≤loc e' ) ∨ (v ↓∈ b loc(e) ∧ ∀e'<e.∀w:T. (¬w ↓∈ X es e'))
BY
{ (DVar `x'
THEN D 0
THEN (OrLeft THENA Auto)
THEN With ⌈x⌉ (D 0)⋅
THEN Auto
THEN D 0
THEN Auto
THEN SupposeNot
THEN Auto
THEN OnMaybeHyp 10 (\h. ((InstHyp [⌈e''⌉] h⋅ THENA Complete (Auto)) THEN D -1))) }
1
1. Info : Type
2. T : Type
3. X : EClass(T)
4. b : Id ─→ bag(T)
5. es : EO+(Info)
6. v : T
7. e : E
8. x : E@i
9. (x <loc e)@i
10. ↑0 <z #(X es x)@i
11. ∀e'':E. ((x <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑0 <z #(X es e'')))@i
12. (last(λe'.0 <z #(X es e')) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e)
∧ (↑((λe'.0 <z #(X es e')) e'))
∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑((λe'.0 <z #(X es e')) e'')))))})
∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe'.0 <z #(X es e')) e')))})))@i
13. v ↓∈ X es x@i
14. (x <loc e)
15. v ↓∈ X es x
16. e'' : E@i
17. (e'' <loc e)@i
18. w : T@i
19. w ↓∈ X es e''@i
20. ¬e'' ≤loc x
⊢ ↑0 <z #(X es e'')
Latex:
Latex:
1. Info : Type
2. T : Type
3. X : EClass(T)
4. b : Id {}\mrightarrow{} bag(T)
5. es : EO+(Info)
6. v : T
7. e : E
8. x : \mexists{}e':\{E| ((e' <loc e)
\mwedge{} (\muparrow{}0 <z \#(X es e'))
\mwedge{} (\mforall{}e'':E. ((e' <loc e'') {}\mRightarrow{} (e'' <loc e) {}\mRightarrow{} (\mneg{}\muparrow{}0 <z \#(X es e'')))))\}@i
9. (last(\mlambda{}e'.0 <z \#(X es e')) e) = (inl x)@i
10. v \mdownarrow{}\mmember{} X es x@i
\mvdash{} \mdownarrow{}\mexists{}e'<e.v \mdownarrow{}\mmember{} X es e' \mwedge{} \mforall{}e''<e.\mforall{}w:T. (w \mdownarrow{}\mmember{} X es e'' {}\mRightarrow{} e'' \mleq{}loc e' )
\mvee{} (v \mdownarrow{}\mmember{} b loc(e) \mwedge{} \mforall{}e'<e.\mforall{}w:T. (\mneg{}w \mdownarrow{}\mmember{} X es e'))
By
Latex:
(DVar `x'
THEN D 0
THEN (OrLeft THENA Auto)
THEN With \mkleeneopen{}x\mkleeneclose{} (D 0)\mcdot{}
THEN Auto
THEN D 0
THEN Auto
THEN SupposeNot
THEN Auto
THEN OnMaybeHyp 10 (\mbackslash{}h. ((InstHyp [\mkleeneopen{}e''\mkleeneclose{}] h\mcdot{} THENA Complete (Auto)) THEN D -1)))
Home
Index