Step
*
3
2
of Lemma
primed-classrel-opt
1. Info : Type
2. T : Type
3. X : EClass(T)
4. b : Id ─→ bag(T)
5. es : EO+(Info)
6. v : T
7. e : E
8. x : E@i
9. (x <loc e)@i
10. ↑0 <z #(X es x)@i
11. ∀e'':E. ((x <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑0 <z #(X es e'')))@i
12. (last(λe'.0 <z #(X es e')) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e)
∧ (↑((λe'.0 <z #(X es e')) e'))
∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑((λe'.0 <z #(X es e')) e'')))))})
∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe'.0 <z #(X es e')) e')))})))@i
13. v ↓∈ b loc(e)@i
14. ∀e'<e.∀w:T. (¬w ↓∈ X es e')@i
⊢ v ↓∈ X es x
BY
{ ((With ⌈x⌉ (D (-1))⋅ THENA Auto)
THEN (D -1 THENA Auto)
THEN FLemma `empty-bag-iff-no-member` [-1]
THEN Auto
THEN HypSubst' (-1) (-6)
THEN RepUR ``bag-size empty-bag`` -6
THEN Auto) }
Latex:
Latex:
1. Info : Type
2. T : Type
3. X : EClass(T)
4. b : Id {}\mrightarrow{} bag(T)
5. es : EO+(Info)
6. v : T
7. e : E
8. x : E@i
9. (x <loc e)@i
10. \muparrow{}0 <z \#(X es x)@i
11. \mforall{}e'':E. ((x <loc e'') {}\mRightarrow{} (e'' <loc e) {}\mRightarrow{} (\mneg{}\muparrow{}0 <z \#(X es e'')))@i
12. (last(\mlambda{}e'.0 <z \#(X es e')) e) = (inl x)@i
13. v \mdownarrow{}\mmember{} b loc(e)@i
14. \mforall{}e'<e.\mforall{}w:T. (\mneg{}w \mdownarrow{}\mmember{} X es e')@i
\mvdash{} v \mdownarrow{}\mmember{} X es x
By
Latex:
((With \mkleeneopen{}x\mkleeneclose{} (D (-1))\mcdot{} THENA Auto)
THEN (D -1 THENA Auto)
THEN FLemma `empty-bag-iff-no-member` [-1]
THEN Auto
THEN HypSubst' (-1) (-6)
THEN RepUR ``bag-size empty-bag`` -6
THEN Auto)
Home
Index