Nuprl Lemma : prior-imax-class-lb

[Info:Type]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[n:ℕ]. ∀[Z:EClass(ℕ)].
  uiff(if e ∈b ((maximum x ≥ with from Z))' then ((maximum x ≥ with from Z))'(e) else -1 fi  
       ≤ n;∀[e':E(Z)]. Z(e') ≤ supposing e' ≤loc 
  supposing ¬↑e ∈b Z


Proof




Definitions occuring in Statement :  es-prior-val: (X)' imax-class: (maximum f[v] ≥ lb with from X) es-E-interface: E(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e ≤loc e'  es-E: E nat: assert: b ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B not: ¬A minus: -n natural_number: $n universe: Type
Lemmas :  prior-imax-class-lb2 not_wf assert_wf in-eclass_wf es-interface-subtype_rel2 es-E_wf event-ordering+_subtype top_wf subtype_top eclass_wf nat_wf event-ordering+_wf

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[n:\mBbbN{}].  \mforall{}[Z:EClass(\mBbbN{})].
    uiff(if  e  \mmember{}\msubb{}  ((maximum  x  \mgeq{}  0  with  x  from  Z))'
              then  ((maximum  x  \mgeq{}  0  with  x  from  Z))'(e)
              else  -1
              fi    \mleq{}  n;\mforall{}[e':E(Z)].  Z(e')  \mleq{}  n  supposing  e'  \mleq{}loc  e  ) 
    supposing  \mneg{}\muparrow{}e  \mmember{}\msubb{}  Z



Date html generated: 2015_07_21-PM-03_38_06
Last ObjectModification: 2015_01_27-PM-06_29_02

Home Index