Step
*
of Lemma
prior-imax-class-lb2
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[n:ℕ]. ∀[A:Type]. ∀[f:A ─→ ℕ]. ∀[Z:EClass(A)].
uiff(if e ∈b ((maximum f[x] ≥ 0 with x from Z))' then ((maximum f[x] ≥ 0 with x from Z))'(e) else -1 fi
≤ n;∀[e':E(Z)]. f[Z(e')] ≤ n supposing e' ≤loc e )
supposing ¬↑e ∈b Z
BY
{ ((UnivCD THENA Auto) THEN (AutoSplit THENA Auto)) }
1
1. Info : Type
2. es : EO+(Info)
3. e : E
4. n : ℕ
5. A : Type
6. f : A ─→ ℕ
7. Z : EClass(A)
8. ¬↑e ∈b Z
9. ↑e ∈b ((maximum f[x] ≥ 0 with x from Z))'
⊢ uiff(((maximum f[x] ≥ 0 with x from Z))'(e) ≤ n;∀[e':E(Z)]. f[Z(e')] ≤ n supposing e' ≤loc e )
2
1. Info : Type
2. es : EO+(Info)
3. e : E
4. n : ℕ
5. A : Type
6. f : A ─→ ℕ
7. Z : EClass(A)
8. ¬↑e ∈b ((maximum f[x] ≥ 0 with x from Z))'
9. ¬↑e ∈b Z
⊢ uiff((-1) ≤ n;∀[e':E(Z)]. f[Z(e')] ≤ n supposing e' ≤loc e )
Latex:
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[n:\mBbbN{}]. \mforall{}[A:Type]. \mforall{}[f:A {}\mrightarrow{} \mBbbN{}]. \mforall{}[Z:EClass(A)].
uiff(if e \mmember{}\msubb{} ((maximum f[x] \mgeq{} 0 with x from Z))'
then ((maximum f[x] \mgeq{} 0 with x from Z))'(e)
else -1
fi \mleq{} n;\mforall{}[e':E(Z)]. f[Z(e')] \mleq{} n supposing e' \mleq{}loc e )
supposing \mneg{}\muparrow{}e \mmember{}\msubb{} Z
By
Latex:
((UnivCD THENA Auto) THEN (AutoSplit THENA Auto))
Home
Index