Step
*
of Lemma
prior-val-val
∀[Info:Type]
∀es:EO+(Info)
∀[T:Type]
∀X:EClass(T). ∀e:E.
∃e':E
((e' <loc e) ∧ (↑e' ∈b X) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑e'' ∈b X))) ∧ ((X)'(e) = X(e') ∈ T))
supposing ↑e ∈b (X)'
BY
{ ((UnivCD THENA Auto)
THEN (RWO "is-prior-val" (-1) THENA Auto)
THEN RepUR ``es-prior-val `` 0
THEN RepUR ``eclass-val`` 0
THEN Fold `eclass-val` 0⋅
THEN (SplitOnConclITE THENA Auto)
THEN Reduce 0) }
1
1. [Info] : Type
2. es : EO+(Info)@i'
3. [T] : Type
4. X : EClass(T)@i'
5. e : E@i
6. ∃e':E. ((e' <loc e) ∧ (↑e' ∈b X))
7. ↑e ∈b prior(X)
⊢ ∃e':E
((e' <loc e) ∧ (↑e' ∈b X) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑e'' ∈b X))) ∧ (X(prior(X)(e)) = X(e') ∈ T))
2
.....falsecase.....
1. [Info] : Type
2. es : EO+(Info)@i'
3. [T] : Type
4. X : EClass(T)@i'
5. e : E@i
6. ∃e':E. ((e' <loc e) ∧ (↑e' ∈b X))
7. ¬↑e ∈b prior(X)
⊢ ∃e':E. ((e' <loc e) ∧ (↑e' ∈b X) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑e'' ∈b X))) ∧ (only({}) = X(e') ∈ T))
Latex:
Latex:
\mforall{}[Info:Type]
\mforall{}es:EO+(Info)
\mforall{}[T:Type]
\mforall{}X:EClass(T). \mforall{}e:E.
\mexists{}e':E
((e' <loc e)
\mwedge{} (\muparrow{}e' \mmember{}\msubb{} X)
\mwedge{} (\mforall{}e'':E. ((e' <loc e'') {}\mRightarrow{} (e'' <loc e) {}\mRightarrow{} (\mneg{}\muparrow{}e'' \mmember{}\msubb{} X)))
\mwedge{} ((X)'(e) = X(e')))
supposing \muparrow{}e \mmember{}\msubb{} (X)'
By
Latex:
((UnivCD THENA Auto)
THEN (RWO "is-prior-val" (-1) THENA Auto)
THEN RepUR ``es-prior-val `` 0
THEN RepUR ``eclass-val`` 0
THEN Fold `eclass-val` 0\mcdot{}
THEN (SplitOnConclITE THENA Auto)
THEN Reduce 0)
Home
Index