Step
*
of Lemma
process-subtype
∀[M,E:Type ─→ Type].
(process(P.M[P];P.E[P]) ⊆r (M[process(P.M[P];P.E[P])]
─→ (process(P.M[P];P.E[P]) × E[process(P.M[P];P.E[P])]))) supposing
(Continuous+(P.E[P]) and
Continuous+(P.M[P]))
BY
{ (Auto THEN Unfold `process` 0 THEN BLemma `corec-subtype` THEN Auto) }
Latex:
\mforall{}[M,E:Type {}\mrightarrow{} Type].
(process(P.M[P];P.E[P]) \msubseteq{}r (M[process(P.M[P];P.E[P])]
{}\mrightarrow{} (process(P.M[P];P.E[P]) \mtimes{} E[process(P.M[P];P.E[P])]))) supposing
(Continuous+(P.E[P]) and
Continuous+(P.M[P]))
By
(Auto THEN Unfold `process` 0 THEN BLemma `corec-subtype` THEN Auto)
Home
Index