Nuprl Lemma : process-subtype
∀[M,E:Type ─→ Type].
  (process(P.M[P];P.E[P]) ⊆r (M[process(P.M[P];P.E[P])]
     ─→ (process(P.M[P];P.E[P]) × E[process(P.M[P];P.E[P])]))) supposing 
     (Continuous+(P.E[P]) and 
     Continuous+(P.M[P]))
Proof
Definitions occuring in Statement : 
process: process(P.M[P];P.E[P])
, 
strong-type-continuous: Continuous+(T.F[T])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
corec-subtype, 
continuous-function, 
strong-continuous-product, 
continuous-id, 
subtype_rel_weakening, 
nat_wf, 
strong-type-continuous_wf
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (process(P.M[P];P.E[P])  \msubseteq{}r  (M[process(P.M[P];P.E[P])]
          {}\mrightarrow{}  (process(P.M[P];P.E[P])  \mtimes{}  E[process(P.M[P];P.E[P])])))  supposing 
          (Continuous+(P.E[P])  and 
          Continuous+(P.M[P]))
Date html generated:
2015_07_17-AM-11_19_35
Last ObjectModification:
2015_01_28-AM-07_36_19
Home
Index