Nuprl Lemma : process-subtype

[M,E:Type ─→ Type].
  (process(P.M[P];P.E[P]) ⊆(M[process(P.M[P];P.E[P])]
     ─→ (process(P.M[P];P.E[P]) × E[process(P.M[P];P.E[P])]))) supposing 
     (Continuous+(P.E[P]) and 
     Continuous+(P.M[P]))


Proof




Definitions occuring in Statement :  process: process(P.M[P];P.E[P]) strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  corec-subtype continuous-function strong-continuous-product continuous-id subtype_rel_weakening nat_wf strong-type-continuous_wf
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (process(P.M[P];P.E[P])  \msubseteq{}r  (M[process(P.M[P];P.E[P])]
          {}\mrightarrow{}  (process(P.M[P];P.E[P])  \mtimes{}  E[process(P.M[P];P.E[P])])))  supposing 
          (Continuous+(P.E[P])  and 
          Continuous+(P.M[P]))



Date html generated: 2015_07_17-AM-11_19_35
Last ObjectModification: 2015_01_28-AM-07_36_19

Home Index