Nuprl Lemma : corec-subtype
∀[F:Type ⟶ Type]. corec(T.F[T]) ⊆r F[corec(T.F[T])] supposing Continuous(T.F[T])
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
corec_subtype, 
type-continuous_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  corec(T.F[T])  \msubseteq{}r  F[corec(T.F[T])]  supposing  Continuous(T.F[T])
Date html generated:
2016_05_14-AM-06_24_43
Last ObjectModification:
2015_12_26-AM-11_58_15
Theory : co-recursion
Home
Index