Nuprl Lemma : corec-subtype

[F:Type ⟶ Type]. corec(T.F[T]) ⊆F[corec(T.F[T])] supposing Continuous(T.F[T])


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) type-continuous: Continuous(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop:
Lemmas referenced :  corec_subtype type-continuous_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality hypothesisEquality universeEquality independent_isectElimination hypothesis axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  corec(T.F[T])  \msubseteq{}r  F[corec(T.F[T])]  supposing  Continuous(T.F[T])



Date html generated: 2016_05_14-AM-06_24_43
Last ObjectModification: 2015_12_26-AM-11_58_15

Theory : co-recursion


Home Index