Nuprl Lemma : corec_subtype

[F:Type ⟶ Type]. corec(T.F[T]) ⊆F[corec(T.F[T])] supposing Continuous(T.F[T])


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) type-continuous: Continuous(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a type-continuous: Continuous(T.F[T]) so_apply: x[s] nat: corec: corec(T.F[T]) so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) sq_stable: SqStable(P) squash: T subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  subtype_rel_self primrec1_lemma primrec_add le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le type-continuous_wf corec_wf subtype_rel_transitivity nat_wf int_seg_wf top_wf primrec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution isectElimination thin lambdaEquality instantiate lemma_by_obid universeEquality hypothesisEquality hypothesis applyEquality natural_numberEquality setElimination rename sqequalRule isectEquality independent_isectElimination axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality dependent_set_memberEquality addEquality dependent_functionElimination unionElimination independent_pairFormation lambdaFormation voidElimination productElimination independent_functionElimination imageMemberEquality baseClosed imageElimination voidEquality intEquality minusEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  corec(T.F[T])  \msubseteq{}r  F[corec(T.F[T])]  supposing  Continuous(T.F[T])



Date html generated: 2016_05_14-AM-06_21_36
Last ObjectModification: 2016_01_14-PM-08_03_28

Theory : co-recursion


Home Index