Step
*
1
of Lemma
rec-comb_wf2
1. Info : Type
2. n : ℕ
3. m : ℕ
4. A : {m..n-} ─→ Type
5. X : i:{m..n-} ─→ es:EO+(Info) ─→ e:E ─→ bag(A i)
6. T : Type
7. f : Id ─→ (i:{m..n-} ─→ bag(A i)) ─→ bag(T) ─→ bag(T)
8. init : Id ─→ bag(T)
⊢ rec-comb(X;f;init) ∈ es:EO+(Info) ─→ e:E ─→ bag(T)
BY
{ ((ExtWith [`es'] [⌈Top ─→ Top⌉]⋅ THEN Try (Complete (Auto)) THEN Try ((RecUnfold `rec-comb` 0 THEN Complete (Auto))))
THEN ExtWith [`e'] [⌈Top ─→ Top⌉]⋅
THEN Try (Complete (Auto))
THEN Try ((RecUnfold `rec-comb` 0 THEN Reduce 0 THEN Complete (Auto)))
THEN MoveToConcl (-1)
THEN CausalInd'
THEN RecUnfold `rec-comb` 0⋅
THEN RepUR ``primed-class-opt`` 0
THEN RepeatFor 2 ((MemCD THEN Try (Complete (Auto))))
THEN Try ((D -2 THEN BackThruSomeHyp THEN Auto))
THEN BLemma `es-local-pred_wf2`
THEN Try (Complete (Auto))
THEN RepeatFor 3 (MemCD)
THEN Try (Complete (Auto))
THEN D -1
THEN BackThruSomeHyp
THEN Auto)⋅ }
Latex:
Latex:
1. Info : Type
2. n : \mBbbN{}
3. m : \mBbbN{}
4. A : \{m..n\msupminus{}\} {}\mrightarrow{} Type
5. X : i:\{m..n\msupminus{}\} {}\mrightarrow{} es:EO+(Info) {}\mrightarrow{} e:E {}\mrightarrow{} bag(A i)
6. T : Type
7. f : Id {}\mrightarrow{} (i:\{m..n\msupminus{}\} {}\mrightarrow{} bag(A i)) {}\mrightarrow{} bag(T) {}\mrightarrow{} bag(T)
8. init : Id {}\mrightarrow{} bag(T)
\mvdash{} rec-comb(X;f;init) \mmember{} es:EO+(Info) {}\mrightarrow{} e:E {}\mrightarrow{} bag(T)
By
Latex:
((ExtWith [`es'] [\mkleeneopen{}Top {}\mrightarrow{} Top\mkleeneclose{}]\mcdot{}
THEN Try (Complete (Auto))
THEN Try ((RecUnfold `rec-comb` 0 THEN Complete (Auto))))
THEN ExtWith [`e'] [\mkleeneopen{}Top {}\mrightarrow{} Top\mkleeneclose{}]\mcdot{}
THEN Try (Complete (Auto))
THEN Try ((RecUnfold `rec-comb` 0 THEN Reduce 0 THEN Complete (Auto)))
THEN MoveToConcl (-1)
THEN CausalInd'
THEN RecUnfold `rec-comb` 0\mcdot{}
THEN RepUR ``primed-class-opt`` 0
THEN RepeatFor 2 ((MemCD THEN Try (Complete (Auto))))
THEN Try ((D -2 THEN BackThruSomeHyp THEN Auto))
THEN BLemma `es-local-pred\_wf2`
THEN Try (Complete (Auto))
THEN RepeatFor 3 (MemCD)
THEN Try (Complete (Auto))
THEN D -1
THEN BackThruSomeHyp
THEN Auto)\mcdot{}
Home
Index