Nuprl Lemma : rec-comb_wf2
∀[Info:Type]. ∀[n,m:ℕ]. ∀[A:{m..n-} ─→ Type]. ∀[X:i:{m..n-} ─→ EClass(A i)]. ∀[T:Type]. ∀[f:Id
                                                                                            ─→ (i:{m..n-} ─→ bag(A i))
                                                                                            ─→ bag(T)
                                                                                            ─→ bag(T)].
∀[init:Id ─→ bag(T)].
  (rec-comb(X;f;init) ∈ EClass(T))
Proof
Definitions occuring in Statement : 
rec-comb: rec-comb(X;f;init)
, 
eclass: EClass(A[eo; e])
, 
Id: Id
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
bag: bag(T)
Lemmas : 
bag_wf, 
Id_wf, 
int_seg_wf, 
eclass_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
nat_wf, 
top_wf, 
es-causl-swellfnd, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
int_seg_subtype-nat, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__equal_int, 
subtype_rel-int_seg, 
le_weakening, 
int_seg_properties, 
le_wf, 
zero-le-nat, 
lelt_wf, 
es-causl_wf, 
es-local-pred_wf2, 
es-locl_wf, 
lt_int_wf, 
bag-size_wf, 
es-causl_weakening, 
equal_wf, 
decidable__lt, 
not-equal-2, 
le-add-cancel-alt, 
not-le-2, 
sq_stable__le, 
add-mul-special, 
zero-mul
Latex:
\mforall{}[Info:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[A:\{m..n\msupminus{}\}  {}\mrightarrow{}  Type].  \mforall{}[X:i:\{m..n\msupminus{}\}  {}\mrightarrow{}  EClass(A  i)].  \mforall{}[T:Type].
\mforall{}[f:Id  {}\mrightarrow{}  (i:\{m..n\msupminus{}\}  {}\mrightarrow{}  bag(A  i))  {}\mrightarrow{}  bag(T)  {}\mrightarrow{}  bag(T)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(T)].
    (rec-comb(X;f;init)  \mmember{}  EClass(T))
Date html generated:
2015_07_21-PM-02_49_21
Last ObjectModification:
2015_01_27-PM-07_41_30
Home
Index