Nuprl Lemma : rec-comb_wf2

[Info:Type]. ∀[n,m:ℕ]. ∀[A:{m..n-} ─→ Type]. ∀[X:i:{m..n-} ─→ EClass(A i)]. ∀[T:Type]. ∀[f:Id
                                                                                            ─→ (i:{m..n-} ─→ bag(A i))
                                                                                            ─→ bag(T)
                                                                                            ─→ bag(T)].
[init:Id ─→ bag(T)].
  (rec-comb(X;f;init) ∈ EClass(T))


Proof




Definitions occuring in Statement :  rec-comb: rec-comb(X;f;init) eclass: EClass(A[eo; e]) Id: Id int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ─→ B[x] universe: Type bag: bag(T)
Lemmas :  bag_wf Id_wf int_seg_wf eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf nat_wf top_wf es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf zero-le-nat lelt_wf es-causl_wf es-local-pred_wf2 es-locl_wf lt_int_wf bag-size_wf es-causl_weakening equal_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul

Latex:
\mforall{}[Info:Type].  \mforall{}[n,m:\mBbbN{}].  \mforall{}[A:\{m..n\msupminus{}\}  {}\mrightarrow{}  Type].  \mforall{}[X:i:\{m..n\msupminus{}\}  {}\mrightarrow{}  EClass(A  i)].  \mforall{}[T:Type].
\mforall{}[f:Id  {}\mrightarrow{}  (i:\{m..n\msupminus{}\}  {}\mrightarrow{}  bag(A  i))  {}\mrightarrow{}  bag(T)  {}\mrightarrow{}  bag(T)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(T)].
    (rec-comb(X;f;init)  \mmember{}  EClass(T))



Date html generated: 2015_07_21-PM-02_49_21
Last ObjectModification: 2015_01_27-PM-07_41_30

Home Index