Nuprl Lemma : int_seg_subtype-nat

[m,n:ℤ].  {m..n-} ⊆r ℕ supposing 0 ≤ m


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop:
Lemmas referenced :  int_seg_subtype_nat le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule axiomEquality natural_numberEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[m,n:\mBbbZ{}].    \{m..n\msupminus{}\}  \msubseteq{}r  \mBbbN{}  supposing  0  \mleq{}  m



Date html generated: 2016_05_13-PM-04_02_01
Last ObjectModification: 2015_12_26-AM-10_56_47

Theory : int_1


Home Index