Nuprl Lemma : int_seg_subtype-nat
∀[m,n:ℤ].  {m..n-} ⊆r ℕ supposing 0 ≤ m
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
int_seg_subtype_nat, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
axiomEquality, 
natural_numberEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[m,n:\mBbbZ{}].    \{m..n\msupminus{}\}  \msubseteq{}r  \mBbbN{}  supposing  0  \mleq{}  m
Date html generated:
2016_05_13-PM-04_02_01
Last ObjectModification:
2015_12_26-AM-10_56_47
Theory : int_1
Home
Index