Nuprl Lemma : es-local-pred_wf2

[Info:Type]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[P:{e':E| (e' <loc e)}  ─→ 𝔹].
  (last(P) e ∈ (∃e':{E| ((e' <loc e) ∧ (↑(P e')) ∧ (∀e'':E. ((e' <loc e'')  (e'' <loc e)  (¬↑(P e'')))))})
   ∨ (∃e':{E| ((e' <loc e) ∧ (↑(P e')))})))


Proof




Definitions occuring in Statement :  es-local-pred: last(P) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:{A| B[x]} not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ─→ B[x] universe: Type
Lemmas :  es-locl_wf bool_wf es-E_wf event-ordering+_subtype event-ordering+_wf es-causl-swellfnd nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf equal_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul es-first_wf2 eqtt_to_assert uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot it_wf es-locl-first assert_elim btrue_neq_bfalse sq_exists_wf all_wf es-pred-locl es-pred_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-locl-iff es-locl_transitivity2 es-le_weakening_eq es-locl_irreflexivity squash_wf true_wf event_ordering_wf iff_weakening_equal es-le_weakening es-causl_weakening subtype_rel_dep_function subtype_rel_sets subtype_rel_self set_wf subtype_rel_union sq_exists_subtype_rel subtype_rel_not assert_functionality_wrt_uiff es-locl_transitivity1 not_assert_elim

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[P:\{e':E|  (e'  <loc  e)\}    {}\mrightarrow{}  \mBbbB{}].
    (last(P)  e  \mmember{}  (\mexists{}e':\{E|  ((e'  <loc  e)
                                                \mwedge{}  (\muparrow{}(P  e'))
                                                \mwedge{}  (\mforall{}e'':E.  ((e'  <loc  e'')  {}\mRightarrow{}  (e''  <loc  e)  {}\mRightarrow{}  (\mneg{}\muparrow{}(P  e'')))))\})
      \mvee{}  (\mneg{}(\mexists{}e':\{E|  ((e'  <loc  e)  \mwedge{}  (\muparrow{}(P  e')))\})))



Date html generated: 2015_07_20-PM-03_57_03
Last ObjectModification: 2015_02_04-PM-05_30_06

Home Index