Nuprl Lemma : not_assert_elim

[b:𝔹]. ff supposing ¬↑b


Proof




Definitions occuring in Statement :  assert: b bfalse: ff bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bool: 𝔹 unit: Unit it: btrue: tt assert: b ifthenelse: if then else fi  implies:  Q not: ¬A true: True false: False prop: bfalse: ff
Lemmas referenced :  not_wf true_wf bfalse_wf false_wf assert_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin sqequalHypSubstitution unionElimination equalityElimination sqequalRule lambdaFormation independent_functionElimination natural_numberEquality voidElimination extract_by_obid isectElimination hypothesis Error :universeIsType,  hypothesisEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[b:\mBbbB{}].  b  =  ff  supposing  \mneg{}\muparrow{}b



Date html generated: 2019_06_20-AM-11_20_06
Last ObjectModification: 2018_09_26-AM-10_50_29

Theory : union


Home Index