Nuprl Lemma : subtype_rel_not

[P,Q:ℙ].  P) ⊆Q) supposing  (↓P)


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: not: ¬A squash: T implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A false: False implies:  Q subtype_rel: A ⊆B prop: guard: {T} squash: T
Lemmas referenced :  squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality functionEquality sqequalHypSubstitution sqequalRule hypothesisEquality voidEquality axiomEquality hypothesis lemma_by_obid isectElimination thin isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality functionExtensionality independent_functionElimination imageElimination voidElimination

Latex:
\mforall{}[P,Q:\mBbbP{}].    (\mneg{}P)  \msubseteq{}r  (\mneg{}Q)  supposing  Q  {}\mRightarrow{}  (\mdownarrow{}P)



Date html generated: 2016_05_13-PM-03_18_57
Last ObjectModification: 2015_12_26-AM-09_08_05

Theory : subtype_0


Home Index