Step
*
of Lemma
rec-op-bind-class_wf
∀[Info,A,B:Type]. ∀[X:A ─→ EClass(B)]. ∀[Y:A ─→ EClass(A)]. ∀[F:A ─→ bag(B) ─→ bag(B)].
rec-op-bind-class(X;Y;F) ∈ A ─→ EClass(B) supposing not-self-starting{i:l}(Info;A;Y)
BY
{ (Auto
THEN UnfoldTopAb (-1)
THEN Assert ⌈∀a:A. ∀es:EO+(Info). ∀e:E. (rec-op-bind-class(X;Y;F) a es e ∈ bag(B))⌉⋅
THEN Try ((Unfold `eclass` 0 THEN RepeatFor 3 ((BetterExt THEN Auto)))⋅)
THEN (Assert ⌈∀n:ℕ. ∀es:EO+(Info). ∀e:E. (||≤loc(e)|| < n
⇒ (∀a:A. (rec-op-bind-class(X;Y;F) a es e ∈ bag(B))))⌉⋅
THENM (Auto THEN InstHyp [⌈||≤loc(e)|| + 1⌉] (-4)⋅ THEN Auto' THEN BHyp (-1) THEN Auto')
)
THEN InductionOnNat
THEN (Complete (Auto') ORELSE (UnivCD THENA Auto))) }
1
1. Info : Type
2. A : Type
3. B : Type
4. X : A ─→ EClass(B)
5. Y : A ─→ EClass(A)
6. F : A ─→ bag(B) ─→ bag(B)
7. ∀x,a:A. ∀es:EO+(Info). ∀e:E. (a ∈ Y x(e)
⇒ (∀w:A. (¬w ∈ Y a(e))))
8. n : ℤ
9. 0 < n
10. ∀es:EO+(Info). ∀e:E. (||≤loc(e)|| < n - 1
⇒ (∀a:A. (rec-op-bind-class(X;Y;F) a es e ∈ bag(B))))
11. es : EO+(Info)@i'
12. e : E@i
13. ||≤loc(e)|| < n@i
14. a : A@i
⊢ rec-op-bind-class(X;Y;F) a es e ∈ bag(B)
Latex:
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[X:A {}\mrightarrow{} EClass(B)]. \mforall{}[Y:A {}\mrightarrow{} EClass(A)]. \mforall{}[F:A {}\mrightarrow{} bag(B) {}\mrightarrow{} bag(B)].
rec-op-bind-class(X;Y;F) \mmember{} A {}\mrightarrow{} EClass(B) supposing not-self-starting\{i:l\}(Info;A;Y)
By
Latex:
(Auto
THEN UnfoldTopAb (-1)
THEN Assert \mkleeneopen{}\mforall{}a:A. \mforall{}es:EO+(Info). \mforall{}e:E. (rec-op-bind-class(X;Y;F) a es e \mmember{} bag(B))\mkleeneclose{}\mcdot{}
THEN Try ((Unfold `eclass` 0 THEN RepeatFor 3 ((BetterExt THEN Auto)))\mcdot{})
THEN (Assert \mkleeneopen{}\mforall{}n:\mBbbN{}. \mforall{}es:EO+(Info). \mforall{}e:E.
(||\mleq{}loc(e)|| < n {}\mRightarrow{} (\mforall{}a:A. (rec-op-bind-class(X;Y;F) a es e \mmember{} bag(B))))\mkleeneclose{}\mcdot{}
THENM (Auto THEN InstHyp [\mkleeneopen{}||\mleq{}loc(e)|| + 1\mkleeneclose{}] (-4)\mcdot{} THEN Auto' THEN BHyp (-1) THEN Auto')
)
THEN InductionOnNat
THEN (Complete (Auto') ORELSE (UnivCD THENA Auto)))
Home
Index