Nuprl Lemma : simple-comb_wf

[Info,B:Type]. ∀[n:ℕ]. ∀[A:ℕn ─→ Type]. ∀[Xs:k:ℕn ─→ EClass(A k)]. ∀[F:(k:ℕn ─→ bag(A k)) ─→ bag(B)].
  (simple-comb(F;Xs) ∈ EClass(B))


Proof




Definitions occuring in Statement :  simple-comb: simple-comb(F;Xs) eclass: EClass(A[eo; e]) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ─→ B[x] natural_number: $n universe: Type bag: bag(T)
Lemmas :  eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf int_seg_wf bag_wf nat_wf
\mforall{}[Info,B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[Xs:k:\mBbbN{}n  {}\mrightarrow{}  EClass(A  k)].
\mforall{}[F:(k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k))  {}\mrightarrow{}  bag(B)].
    (simple-comb(F;Xs)  \mmember{}  EClass(B))



Date html generated: 2015_07_17-PM-00_39_38
Last ObjectModification: 2015_01_27-PM-11_12_50

Home Index