Step
*
of Lemma
subtype-fpf-cap-top2
∀[X,T:Type]. ∀[eq:EqDecider(X)]. ∀[g:x:X fp-> Type]. ∀[x:X]. T ⊆r g(x)?Top supposing (↑x ∈ dom(g))
⇒ (T ⊆r g(x))
BY
{ (Auto THEN Unfold `fpf-cap` 0 THEN SplitOnConclITE THEN Auto THEN ThinTrivial THEN Auto THEN D 0 THEN Auto) }
Latex:
\mforall{}[X,T:Type]. \mforall{}[eq:EqDecider(X)]. \mforall{}[g:x:X fp-> Type]. \mforall{}[x:X].
T \msubseteq{}r g(x)?Top supposing (\muparrow{}x \mmember{} dom(g)) {}\mRightarrow{} (T \msubseteq{}r g(x))
By
(Auto
THEN Unfold `fpf-cap` 0
THEN SplitOnConclITE
THEN Auto
THEN ThinTrivial
THEN Auto
THEN D 0
THEN Auto)
Home
Index