Nuprl Lemma : subtype-fpf-cap-top2

[X,T:Type]. ∀[eq:EqDecider(X)]. ∀[g:x:X fp-> Type]. ∀[x:X].  T ⊆g(x)?Top supposing (↑x ∈ dom(g))  (T ⊆g(x))


Proof




Definitions occuring in Statement :  fpf-cap: f(x)?z fpf-ap: f(x) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) assert: b uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top implies:  Q universe: Type
Lemmas :  assert_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top subtype_rel_wf fpf-ap_wf fpf_wf deq_wf equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
\mforall{}[X,T:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[g:x:X  fp->  Type].  \mforall{}[x:X].
    T  \msubseteq{}r  g(x)?Top  supposing  (\muparrow{}x  \mmember{}  dom(g))  {}\mRightarrow{}  (T  \msubseteq{}r  g(x))



Date html generated: 2015_07_17-AM-09_17_54
Last ObjectModification: 2015_01_28-AM-07_50_37

Home Index