Nuprl Lemma : urand_wf
∀[n:ℕ+]. ∀[a:Id]. (urand(n;a) ∈ ℕ ─→ ℕn)
Proof
Definitions occuring in Statement :
urand: urand(n;a)
,
Id: Id
,
nat_plus: ℕ+
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ─→ B[x]
,
natural_number: $n
Lemmas :
Id_wf,
nat_plus_wf,
length-map,
int_seg_wf,
upto_wf,
length_upto,
nat_plus_subtype_nat,
subtype_rel_self,
nat_wf
\mforall{}[n:\mBbbN{}\msupplus{}]. \mforall{}[a:Id]. (urand(n;a) \mmember{} \mBbbN{} {}\mrightarrow{} \mBbbN{}n)
Date html generated:
2015_07_17-AM-09_15_21
Last ObjectModification:
2015_01_28-AM-07_54_42
Home
Index