Nuprl Lemma : urand_wf

[n:ℕ+]. ∀[a:Id].  (urand(n;a) ∈ ℕ ─→ ℕn)


Proof




Definitions occuring in Statement :  urand: urand(n;a) Id: Id nat_plus: + int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] natural_number: $n
Lemmas :  Id_wf nat_plus_wf length-map int_seg_wf upto_wf length_upto nat_plus_subtype_nat subtype_rel_self nat_wf
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[a:Id].    (urand(n;a)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}n)



Date html generated: 2015_07_17-AM-09_15_21
Last ObjectModification: 2015_01_28-AM-07_54_42

Home Index