Nuprl Lemma : length_upto

[n:ℕ]. (||upto(n)|| n)


Proof




Definitions occuring in Statement :  upto: upto(n) length: ||as|| nat: uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  upto: upto(n) uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: sq_type: SQType(T) guard: {T} bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_wf length-from-upto lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int subtype_base_sq int_subtype_base nat_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot less_than_wf intformand_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality lambdaFormation unionElimination equalityElimination because_Cache productElimination independent_isectElimination instantiate cumulativity intEquality dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry independent_functionElimination promote_hyp independent_pairFormation

Latex:
\mforall{}[n:\mBbbN{}].  (||upto(n)||  \msim{}  n)



Date html generated: 2017_04_17-AM-07_56_50
Last ObjectModification: 2017_02_27-PM-04_28_18

Theory : list_1


Home Index