Nuprl Lemma : length-from-upto

[n,m:ℤ].  (||[n, m)|| if n <then else fi )


Proof




Definitions occuring in Statement :  from-upto: [n, m) length: ||as|| ifthenelse: if then else fi  lt_int: i <j uall: [x:A]. B[x] subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] from-upto: [n, m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  decidable: Dec(P) or: P ∨ Q bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) has-value: (a)↓
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf subtract_wf subtype_base_sq nat_wf set_subtype_base int_subtype_base lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int length_of_cons_lemma decidable__equal_int itermSubtract_wf int_term_value_subtract_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot length_of_nil_lemma intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma false_wf decidable__le value-type-has-value int-value-type itermAdd_wf int_term_value_add_lemma non_neg_length from-upto_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom instantiate cumulativity because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination addEquality dependent_set_memberEquality promote_hyp callbyvalueReduce isect_memberFormation setEquality productEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    (||[n,  m)||  \msim{}  if  n  <z  m  then  m  -  n  else  0  fi  )



Date html generated: 2017_04_17-AM-07_53_25
Last ObjectModification: 2017_02_27-PM-04_27_34

Theory : list_1


Home Index