Nuprl Lemma : from-upto_wf

[n,m:ℤ].  ([n, m) ∈ {x:ℤ(n ≤ x) ∧ x < m}  List)


Proof




Definitions occuring in Statement :  from-upto: [n, m) list: List less_than: a < b uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: from-upto: [n, m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b decidable: Dec(P) has-value: (a)↓ subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf le_wf subtract_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int cons_wf itermSubtract_wf int_term_value_subtract_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot nil_wf decidable__le intformnot_wf int_formula_prop_not_lemma value-type-has-value nat_wf itermAdd_wf int_term_value_add_lemma subtype_rel_list_set
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry unionElimination equalityElimination productElimination setEquality productEquality because_Cache promote_hyp instantiate cumulativity callbyvalueReduce addEquality applyEquality isect_memberFormation dependent_set_memberEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    ([n,  m)  \mmember{}  \{x:\mBbbZ{}|  (n  \mleq{}  x)  \mwedge{}  x  <  m\}    List)



Date html generated: 2017_04_17-AM-07_53_14
Last ObjectModification: 2017_02_27-PM-04_25_35

Theory : list_1


Home Index