Step
*
1
of Lemma
votes-from-inning-is-nil
1. V : Type
2. A : Id List
3. L : consensus-rcv(V;A) List
4. i : ℤ
5. n : ℤ
6. filter(λr.n <z inning(r);L) = [] ∈ (consensus-rcv(V;A) List)
7. n < i
8. i@0 : ℕ||L||@i
9. ↑inning(L[i@0]) =z i@i
⊢ False
BY
{ (RenameVar `j' (-2)
THEN (Assert (L[j] ∈ filter(λr.n <z inning(r);L)) BY
((BLemma `member_filter` THEN Reduce 0) THEN Auto))
) }
1
1. V : Type
2. A : Id List
3. L : consensus-rcv(V;A) List
4. i : ℤ
5. n : ℤ
6. filter(λr.n <z inning(r);L) = [] ∈ (consensus-rcv(V;A) List)
7. n < i
8. j : ℕ||L||@i
9. ↑inning(L[j]) =z i@i
10. (L[j] ∈ L)
⊢ ↑n <z inning(L[j])
2
1. V : Type
2. A : Id List
3. L : consensus-rcv(V;A) List
4. i : ℤ
5. n : ℤ
6. filter(λr.n <z inning(r);L) = [] ∈ (consensus-rcv(V;A) List)
7. n < i
8. j : ℕ||L||@i
9. ↑inning(L[j]) =z i@i
10. (L[j] ∈ filter(λr.n <z inning(r);L))
⊢ False
Latex:
1. V : Type
2. A : Id List
3. L : consensus-rcv(V;A) List
4. i : \mBbbZ{}
5. n : \mBbbZ{}
6. filter(\mlambda{}r.n <z inning(r);L) = []
7. n < i
8. i@0 : \mBbbN{}||L||@i
9. \muparrow{}inning(L[i@0]) =\msubz{} i@i
\mvdash{} False
By
(RenameVar `j' (-2)
THEN (Assert (L[j] \mmember{} filter(\mlambda{}r.n <z inning(r);L)) BY
((BLemma `member\_filter` THEN Reduce 0) THEN Auto))
)
Home
Index