Nuprl Lemma : bind-class_local
∀[Info,A,B:Type].
  ∀[X:EClass(A)]. ∀[Y:A ─→ EClass(B)].  (LocalClass(X) ⇒ (∀a:A. LocalClass(Y[a])) ⇒ LocalClass(X >a> Y[a])) 
  supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
bind-class: X >x> Y[x], 
local-class: LocalClass(X), 
eclass: EClass(A[eo; e]), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ─→ B[x], 
universe: Type
Lemmas : 
equal-wf-base, 
base_wf, 
bind-class-program_wf, 
all_wf, 
local-class_wf, 
eclass_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
valueall-type_wf
Latex:
\mforall{}[Info,A,B:Type].
    \mforall{}[X:EClass(A)].  \mforall{}[Y:A  {}\mrightarrow{}  EClass(B)].
        (LocalClass(X)  {}\mRightarrow{}  (\mforall{}a:A.  LocalClass(Y[a]))  {}\mRightarrow{}  LocalClass(X  >a>  Y[a])) 
    supposing  valueall-type(B)
Date html generated:
2015_07_22-PM-00_02_46
Last ObjectModification:
2015_01_28-AM-09_53_12
Home
Index