Nuprl Lemma : eclass-disju-program_wf

[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[xpr:LocalClass(X)]. ∀[ypr:LocalClass(Y)].
  (xpr ypr ∈ LocalClass(X Y)) supposing (valueall-type(A) and valueall-type(B))


Proof




Definitions occuring in Statement :  eclass-disju-program: xpr ypr eclass-disju: Y local-class: LocalClass(X) eclass: EClass(A[eo; e]) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Lemmas :  parallel-class-program_wf union-valueall-type eclass1_wf Id_wf eclass1-program_wf valueall-type_wf local-class_wf eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf

Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[xpr:LocalClass(X)].  \mforall{}[ypr:LocalClass(Y)].
    (xpr  +  ypr  \mmember{}  LocalClass(X  +  Y))  supposing  (valueall-type(A)  and  valueall-type(B))



Date html generated: 2015_07_22-PM-00_04_11
Last ObjectModification: 2015_01_28-AM-09_52_38

Home Index