Nuprl Lemma : eclass-disju-program_wf
∀[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[xpr:LocalClass(X)]. ∀[ypr:LocalClass(Y)].
  (xpr + ypr ∈ LocalClass(X + Y)) supposing (valueall-type(A) and valueall-type(B))
Proof
Definitions occuring in Statement : 
eclass-disju-program: xpr + ypr
, 
eclass-disju: X + Y
, 
local-class: LocalClass(X)
, 
eclass: EClass(A[eo; e])
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Lemmas : 
parallel-class-program_wf, 
union-valueall-type, 
eclass1_wf, 
Id_wf, 
eclass1-program_wf, 
valueall-type_wf, 
local-class_wf, 
eclass_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[xpr:LocalClass(X)].  \mforall{}[ypr:LocalClass(Y)].
    (xpr  +  ypr  \mmember{}  LocalClass(X  +  Y))  supposing  (valueall-type(A)  and  valueall-type(B))
Date html generated:
2015_07_22-PM-00_04_11
Last ObjectModification:
2015_01_28-AM-09_52_38
Home
Index