Nuprl Lemma : parallel-class-program_wf

[Info,B:Type].
  ∀[X,Y:EClass(B)]. ∀[Xpr:LocalClass(X)]. ∀[Ypr:LocalClass(Y)].  (Xpr || Ypr ∈ LocalClass(X || Y)) 
  supposing valueall-type(B)


Proof




Definitions occuring in Statement :  parallel-class-program: || Y parallel-class: || Y local-class: LocalClass(X) eclass: EClass(A[eo; e]) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  hdataflow_wf bag_wf valueall-type-has-valueall bag-valueall-type bag-append_wf evalall-reduce bag-subtype-list bag-append-empty hdf-ap_wf iterate-hdataflow_wf hdf-halt_wf iterate-hdf-halt subtype_rel_list top_wf iff_weakening_equal pi2_wf squash_wf true_wf list_wf hdf-parallel-halt-right empty_bag_append_lemma

Latex:
\mforall{}[Info,B:Type].
    \mforall{}[X,Y:EClass(B)].  \mforall{}[Xpr:LocalClass(X)].  \mforall{}[Ypr:LocalClass(Y)].    (Xpr  ||  Ypr  \mmember{}  LocalClass(X  ||  Y)) 
    supposing  valueall-type(B)



Date html generated: 2015_07_22-PM-00_03_50
Last ObjectModification: 2015_02_04-PM-05_10_36

Home Index