Nuprl Lemma : parallel-class-program_wf
∀[Info,B:Type].
  ∀[X,Y:EClass(B)]. ∀[Xpr:LocalClass(X)]. ∀[Ypr:LocalClass(Y)].  (Xpr || Ypr ∈ LocalClass(X || Y)) 
  supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
parallel-class-program: X || Y
, 
parallel-class: X || Y
, 
local-class: LocalClass(X)
, 
eclass: EClass(A[eo; e])
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
hdataflow_wf, 
bag_wf, 
valueall-type-has-valueall, 
bag-valueall-type, 
bag-append_wf, 
evalall-reduce, 
bag-subtype-list, 
bag-append-empty, 
hdf-ap_wf, 
iterate-hdataflow_wf, 
hdf-halt_wf, 
iterate-hdf-halt, 
subtype_rel_list, 
top_wf, 
iff_weakening_equal, 
pi2_wf, 
squash_wf, 
true_wf, 
list_wf, 
hdf-parallel-halt-right, 
empty_bag_append_lemma
Latex:
\mforall{}[Info,B:Type].
    \mforall{}[X,Y:EClass(B)].  \mforall{}[Xpr:LocalClass(X)].  \mforall{}[Ypr:LocalClass(Y)].    (Xpr  ||  Ypr  \mmember{}  LocalClass(X  ||  Y)) 
    supposing  valueall-type(B)
Date html generated:
2015_07_22-PM-00_03_50
Last ObjectModification:
2015_02_04-PM-05_10_36
Home
Index