Nuprl Lemma : hdf-parallel-halt-right
∀[A,B:Type]. ∀[X:hdataflow(A;B)].  X || hdf-halt() = X ∈ hdataflow(A;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
hdf-parallel: X || Y
, 
hdf-halt: hdf-halt()
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
hdataflow-equal, 
hdf-parallel_wf, 
hdf-halt_wf, 
list_induction, 
all_wf, 
bool_wf, 
hdf-halted_wf, 
iterate-hdataflow_wf, 
uall_wf, 
equal_wf, 
bag_wf, 
hdf-out_wf, 
list_wf, 
iter_hdf_nil_lemma, 
hdf_halted_halt_red_lemma, 
eqtt_to_assert, 
hdf_out_halt_red_lemma, 
hdf-halted-is-halt, 
empty-bag_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
hdf_halted_run_red_lemma, 
hdf-out-run, 
hdataflow-ext, 
unit_wf2, 
hdf_halted_inl_red_lemma, 
hdf-ap-inl, 
bag-append-empty, 
bag-subtype-list, 
valueall-type-has-valueall, 
bag-valueall-type, 
evalall-reduce, 
hdf-out-inl, 
and_wf, 
hdataflow_wf, 
pi2_wf, 
not_wf, 
false_wf, 
true_wf, 
iter_hdf_cons_lemma, 
hdf_ap_halt_lemma, 
hdf-ap-run, 
valueall-type_wf, 
subtype_rel_list, 
top_wf, 
btrue_wf, 
iterate-hdf-halt
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    X  ||  hdf-halt()  =  X  supposing  valueall-type(B)
Date html generated:
2015_07_17-AM-08_06_20
Last ObjectModification:
2015_01_27-PM-00_17_15
Home
Index