Nuprl Lemma : hdf-parallel-halt-right

[A,B:Type]. ∀[X:hdataflow(A;B)].  || hdf-halt() X ∈ hdataflow(A;B) supposing valueall-type(B)


Proof




Definitions occuring in Statement :  hdf-parallel: || Y hdf-halt: hdf-halt() hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Lemmas :  hdataflow-equal hdf-parallel_wf hdf-halt_wf list_induction all_wf bool_wf hdf-halted_wf iterate-hdataflow_wf uall_wf equal_wf bag_wf hdf-out_wf list_wf iter_hdf_nil_lemma hdf_halted_halt_red_lemma eqtt_to_assert hdf_out_halt_red_lemma hdf-halted-is-halt empty-bag_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot hdf_halted_run_red_lemma hdf-out-run hdataflow-ext unit_wf2 hdf_halted_inl_red_lemma hdf-ap-inl bag-append-empty bag-subtype-list valueall-type-has-valueall bag-valueall-type evalall-reduce hdf-out-inl and_wf hdataflow_wf pi2_wf not_wf false_wf true_wf iter_hdf_cons_lemma hdf_ap_halt_lemma hdf-ap-run valueall-type_wf subtype_rel_list top_wf btrue_wf iterate-hdf-halt
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    X  ||  hdf-halt()  =  X  supposing  valueall-type(B)



Date html generated: 2015_07_17-AM-08_06_20
Last ObjectModification: 2015_01_27-PM-00_17_15

Home Index